Graduate Aptitude Test in Engineering

Notations: 1 Options shown in green col	or and with 🗸 icon are correct.
_	and with * icon are incorrect.
Question Paper Name: Number of Questions: Total Marks:	MA: MATHEMATICS 1st Feb shift2 65 100.0
Wrong answer for MCQ wil	result in negative marks, (-1/3) for 1 mark Questions and (-2/3) for 2 marks Questions.
	General Aptitude
Number of Questions: Section Marks:	10 15.0
Choose the appropriate word/psentence: Apparent lifelessness (A) harbours (B) leading to the component of	hrase, out of the four options given below, to complete the following dormant life. ds to (C) supports (D) affects
Question Number: 2 Question Typ Fill in the blank with the corre	
That boy from the town was a	in the sleepy village.
(A) dog out of herd (C) fish out of water	(B) sheep from the heap (D) bird from the flock
Options: 1. ★ A 2. ★ B 3. ✔ C 4. ★ D	

Question Number: 3 Question Type: MCQ

Cho	ose the statement where under	rlined word is used correc	etly.	
(B)	When the teacher eludes to d When the thief keeps eludin Matters that are difficult to u Mirages can be <u>allusive</u> , but	g the police, he is being <u>e</u> inderstand, identify or rei	<u>lusive</u> . nember are <u>allusive</u> .	
Option	s:			
1. 🗱	A			
2. 🗸	В			
3. 🕷	С			
4. 🕷	D			
Questi	ion Number : 4 Question Type : N	ИCQ		
	ya is older than Eric.			
	f is older than Tanya. is older than Cliff.			
EHC	is older than Chri.			
	If the first two statements are	true, then the third staten	nent is:	
(B) (C) (D) Option 1. * 2. * 4. * Questive before the country of t	A B C D ion Number : 5 Question Type : N e teams have to compete in a ore going to the next round, and of matches?	league, with every tean How many matches will	n playing every other tea	
(A)	20 (B) 10	(C) 8	(D) 5	
Option				
1. 🤻	A			
1	B			

3. **%** C

4. 🗱 D

Question Number: 6 Question Type: MCQ

Select the appropriate option in place of underlined part of the sentence.

Increased productivity necessary reflects greater efforts made by the employees.

- (A) Increase in productivity necessary
- (B) Increase productivity is necessary
- (C) Increase in productivity necessarily
- (D) No improvement required

Options:

- 1. 🏁 A
- 2. 🎏 B
- 3. 🗸 C
- 4. * D

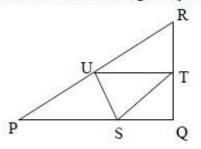
Question Number: 7 Question Type: MCQ

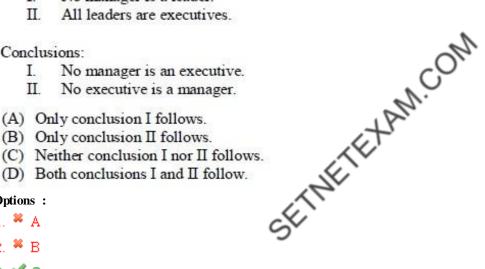
Given below are two statements followed by two conclusions. Assuming these statements to be true, decide which one logically follows.

Statements:

- T No manager is a leader.
- II. All leaders are executives.

Conclusions:


- (A) Only conclusion I follows.


Options:

- 1. 🏁 A
- 2. 🎏 B
- 3. 🎺 C
- 4. * D

Question Number: 8 Question Type: NAT

In the given figure angle Q is a right angle, PS:QS = 3:1, RT:QT = 5:2 and PU:UR = 1:1. If area of triangle QTS is 20 cm², then the area of triangle PQR in cm² is _____.

Question Number: 9 Question Type: MCQ

Right triangle PQR is to be constructed in the xy - plane so that the right angle is at P and line PR is parallel to the x-axis. The x and y coordinates of P, Q, and R are to be integers that satisfy the inequalities: $-4 \le x \le 5$ and $6 \le y \le 16$. How many different triangles could be constructed with these properties?

(A) 110

(B) 1,100

(C) 9,900

(D) 10,000

Options:

- 1. 🏁 A
- 2. X B
- 3. 🗸 C
- 4. * D

Question Number: 10 Question Type: MCQ

As in each of the the event that two the event that two the collowing statements is 1

(B) Y and Z are dependent (D) X and Z are independent A coin is tossed thrice. Let X be the event that head occurs in each of the first two tosses. Let Y be the event that a tail occurs on the third toss. Let Z be the event that two tails occur in three tosses. Based on the above information, which one of the following statements is TRUE?

- (A) X and Y are not independent

(C) Y and Z are independent

Options:

- 1. 38 A
- 2. 🗸 B
- 3. 🏶 C
- 4. * D

Mathematics

Number of Ouestions: Section Marks:

55 85.0

Q.11 to Q.35 carry 1 mark each & Q.36 to Q.65 carry 2 marks each.

Question Number: 11 Question Type: NAT

Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be a linear map defined by

T(x, y, z, w) = (x + z, 2x + y + 3z, 2y + 2z, w).

Then the rank of T is equal to

Correct Answer:

Question Number: 12 Question Type: NAT

Let M be a 3×3 matrix and suppose that 1, 2 and 3 are the eigenvalues of M. If

$$M^{-1} = \frac{M^2}{\alpha} - M + \frac{11}{\alpha} I_3$$

for some scalar $\alpha \neq 0$, then α is equal to

Correct Answer:

Question Number: 13 Question Type: NAT

Let M be a 3×3 singular matrix and suppose that 2 and 3 are eigenvalues of M. Then the number of linearly independent eigenvectors of $M^3 + 2M + I_3$ is equal to

Correct Answer:

Question Number: 15 Question Type: MCQ

Let $f:[0,\infty)\to\mathbb{R}$ be defined by

$$f(x) = \int_0^x \sin^2(t^2) dt.$$

Then the function f is

- (A) uniformly continuous on [0, 1) but NOT on (0, ∞)
- (B) uniformly continuous on (0, ∞) but NOT on [0, 1)
- (C) uniformly continuous on both [0, 1) and (0, ∞)
- (D) neither uniformly continuous on [0, 1) nor uniformly continuous on (0, ∞)

Options:

Question Number: 16 Question Type: NAT

Consider the power series
$$\sum_{n=0}^{\infty} a_n z^n$$
, where $a_n = \begin{cases} \frac{1}{3^n} & \text{if } n \text{ is even} \\ \frac{1}{5^n} & \text{if } n \text{ is odd.} \end{cases}$

The radius of convergence of the series is equal to _

Correct Answer:

Question Number: 17 Question Type: NAT

Let
$$C = \{ z \in \mathbb{C} : |z - i| = 2 \}$$
. Then $\frac{1}{2\pi} \oint_C \frac{z^2 - 4}{z^2 + 4} dz$ is equal to ______

Correct Answer:

Question Number: 18 Question Type: NAT

Question Number : 18 Question Type : NAT

Let
$$X \sim B(5, \frac{1}{2})$$
 and $Y \sim U(0,1)$. Then $\frac{P(X+Y \leq 2)}{P(X+Y \geq 5)}$ is equal to

Correct Answer:

6

Ouestion Number : 19 Question Type : NAT

Question Number: 19 Question Type: NAT

Let the random variable X have the distribution function

$$F(x) = \begin{cases} \frac{0}{x} & \text{if } x < 0 \\ \frac{x}{2} & \text{if } 0 \le x < 1 \\ \frac{3}{5} & \text{if } 1 \le x < 2 \\ \frac{1}{2} + \frac{x}{8} & \text{if } 2 \le x < 3 \\ 1 & \text{if } x \ge 3. \end{cases}$$

Then $P(2 \le X < 4)$ is equal to

Correct Answer:

Question Number: 20 Question Type: NAT

Let X be a random variable having the distribution function

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{1}{4} & \text{if } 0 \le x < 1 \\ \frac{1}{3} & \text{if } 1 \le x < 2 \\ \frac{1}{2} & \text{if } 2 \le x < \frac{11}{3} \\ 1 & \text{if } x \ge \frac{11}{3}. \end{cases}$$

Then E(X) is equal to

Correct Answer:

2.25

Question Number: 21 Question Type: MCQ

amed in succession. The (C) $\frac{175}{65}$ (D) $\frac{200}{65}$ In an experiment, a fair die is rolled until two sixes are obtained in succession. The probability that the experiment will end in the fifth trial is equal to

$$(A)\frac{125}{6^5}$$

(B)
$$\frac{150}{6^5}$$

$$(C)\frac{175}{6^5}$$

(D)
$$\frac{200}{6^5}$$

Options:

Question Number: 22 Question Type: MCQ

Let $x_1 = 2.2$, $x_2 = 4.3$, $x_3 = 3.1$, $x_4 = 4.5$, $x_5 = 1.1$ and $x_6 = 5.7$ be the observed values of a random sample of size 6 from a $U(\theta-1, \theta+4)$ distribution, where $\theta \in (0, \infty)$ is unknown. Then a maximum likelihood estimate of θ is equal to

Options:

Question Number: 23 Question Type: MCQ

Let $\Omega = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$ be the open unit disc in \mathbb{R}^2 with boundary $\partial\Omega$. If u(x,y) is the solution of the Dirichlet problem

$$u_{xx} + u_{yy} = 0$$
 in Ω
 $u(x, y) = 1 - 2y^2$ on $\partial \Omega$,

then $u\left(\frac{1}{2},0\right)$ is equal to

$$(A) - 1$$

$$(B)^{\frac{-1}{4}}$$

(C)
$$\frac{1}{4}$$

Options:

- 1. 🏁 A
- 2. X B
- 3. 🗸 C
- 4. × D

Question Number: 24 Question Type: NAT

Let $c \in \mathbb{Z}_3$ be such that $\frac{\mathbb{Z}_2[X]}{(X^2 + cX + 1)}$ is a field. Then c is equal to ______

Correct Answer:

Question Number: 25 Question Type: MCQ

 $Q_{\parallel_{\infty}}$) and $Y = \{C[0, 1], \parallel \parallel_{2}\}$. Then V is Let $V = C^1[0, 1], X = (C[0, 1], ||$

- (A) dense in X but NOT in Y
- (B) dense in Y but NOT in X
- (C) dense in both X and Y
- (D) neither dense in X nor dense in Y

Options:

- 1. 🏁 A
- 2. 🗱 B
- 3. 🗸 C
- 4. * D

Question Number: 26 Question Type: NAT

Let $T: (C[0,1], \| \|_{\infty}) \to \mathbb{R}$ be defined by $T(f) = \int_0^1 2x f(x) dx$ for all $f \in C[0,1]$. Then $\|T\|$ is equal to _____

Correct Answer:

Question Number: 27 Question Type: MCQ

```
Let \tau_1 be the usual topology on \mathbb{R}. Let \tau_2 be the topology on \mathbb{R} generated by
 \mathcal{B} = \{[a,b) \subset \mathbb{R}: -\infty < a < b < \infty\}. Then the set \{x \in \mathbb{R}: 4 \sin^2 x \le 1\} \cup \{\frac{\pi}{2}\} is
 (A) closed in (ℝ, τ₁) but NOT in (ℝ, τ₂)
 (B) closed in (\mathbb{R}, \tau_2) but NOT in (\mathbb{R}, \tau_1)
 (C) closed in both (ℝ, τ₁) and (ℝ, τ₂)
 (D) neither closed in (\mathbb{R}, \tau_1) nor closed in (\mathbb{R}, \tau_2)
Options:
1. 🏁 A
2. 🏁 B
3. 🗸 C
4. * D
Question Number: 28 Question Type: MCQ
 Let X be a connected topological space such that there exists a non-constant continuous function
  f: X \to \mathbb{R}, where \mathbb{R} is equipped with the usual topology. Let f(X) = \{f(x) : x \in X\}. Then
 (A) X is countable but f(X) is uncountable
 (B) f(X) is countable but X is uncountable
                                                 THE TEXAM.COM
 (C) both f(X) and X are countable
 (D) both f(X) and X are uncountable
Options:
1. 🏁 A
2. 🏁 B
3. 🏶 C
4. 🖋 D
Question Number: 29 Question Type: MCQ
Let d_1 and d_2 denote the usual metric and the discrete metric on \mathbb{R}, respectively.
Let f:(\mathbb{R},d_1)\to(\mathbb{R},d_2) be defined by f(x)=x,\ x\in\mathbb{R}. Then
(A) f is continuous but f^{-1} is NOT continuous
 (B) f<sup>-1</sup> is continuous but f is NOT continuous
(C) both f and f^{-1} are continuous
(D) neither f nor f^{-1} is continuous
Options:
1. 🏁 A
2. 🖋 B
3. 🏶 C
4. * D
```

If the trapezoidal rule with single interval [0, 1] is exact for approximating the integral

Question Number: 30 Question Type: NAT

 $\int_0^1 (x^3 - c x^2) dx$, then the value of c is equal to _____

Correct Answer:

1.5

Question Number: 31 Question Type: NAT

Suppose that the Newton-Raphson method is applied to the equation $2x^2 + 1 - e^{x^2} = 0$ with an initial approximation x_0 sufficiently close to zero. Then, for the root x=0, the order of convergence of the method is equal to

Correct Answer:

Question Number: 32 Question Type: NAT

The minimum possible order of a homogeneous linear ordinary differential equation with real constant coefficients having $x^2 \sin(x)$ as a solution is equal to _____

Correct Answer:

Question Number: 33 Question Type: MCQ

Correct Answer:

Question Number: 33 Question Type: MCQ

The Lagrangian of a system in terms of polar coordinates
$$(r, \theta)$$
 is given by

$$L = \frac{1}{2} m \dot{r}^2 + \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) - m g r \left(1 - \cos(\theta) \right),$$

where m is the mass, g is the acceleration due to gravity and \dot{s} denotes the derivative of s with respect to time. Then the equations of motion are

(A)
$$2\ddot{r} = r\dot{\theta}^2 - g(1 - \cos(\theta)), \frac{d}{dt}(r^2\dot{\theta}) = -g r \sin(\theta)$$

(B)
$$2\ddot{r} = r\dot{\theta}^2 + g(1 - \cos(\theta)), \frac{d}{dt}(r^2\dot{\theta}) = -gr\sin(\theta)$$

(C)
$$2\ddot{r} = r\dot{\theta}^2 - g(1 - \cos(\theta)), \frac{d}{dt}(r^2\dot{\theta}) = gr\sin(\theta)$$

(D)
$$2\ddot{r} = r\dot{\theta}^2 + g(1 - \cos(\theta)), \frac{d}{dt}(r^2\dot{\theta}) = gr\sin(\theta)$$

Options:

Question Number: 34 Question Type: NAT

If y(x) satisfies the initial value problem

$$(x^2 + y)dx = x dy, y(1) = 2,$$

then y(2) is equal to

Question Number: 35 Question Type: NAT

It is known that Bessel functions $J_n(x)$, for $n \ge 0$, satisfy the identity

$$e^{\frac{x}{2}(t-\frac{1}{t})} = J_0(x) + \sum_{n=1}^{\infty} J_n(x) \left(t^n + \frac{(-1)^n}{t^n}\right)$$

for all t > 0 and $x \in \mathbb{R}$. The value of $J_0\left(\frac{\pi}{3}\right) + 2\sum_{n=1}^{\infty} J_{2n}\left(\frac{\pi}{3}\right)$ is equal to ______

Correct Answer:

Question Number: 36 Question Type: MCQ

Let X and Y be two random variables having the joint probability density function

$$f(x,y) = \begin{cases} 2 & \text{if } 0 < x < y < 1 \\ 0 & \text{otherwise.} \end{cases}$$

 $f(x,y) = \begin{cases} 2 & \text{if } 0 < x < y < 1 \\ 0 & \text{otherwise.} \end{cases}$ Then the conditional probability $P\left(X \leq \frac{2}{3} \mid Y = \frac{3}{4}\right)$ is equal to (A) $\frac{5}{9}$ (B) $\frac{2}{3}$ (C) $\frac{7}{9}$

Options:

1. 🏁 A

2. 🏁 B

3. X C

4. 🖋 D

Question Number: 37 Question Type: NAT

Let $\Omega = (0,1]$ be the sample space and let $P(\cdot)$ be a probability function defined by

$$P((0,x]) = \begin{cases} \frac{x}{2} & \text{if } 0 \le x < \frac{1}{2} \\ x & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

Then $P\left(\left\{\frac{1}{2}\right\}\right)$ is equal to _

Question Number: 38 Question Type: NAT

Let X_1, X_2 and X_3 be independent and identically distributed random variables with $E(X_1) = 0$ and $E(X_1^2) = \frac{15}{4}$. If $\psi: (0, \infty) \to (0, \infty)$ is defined through the conditional expectation

$$\psi(t) = E(X_1^2 \mid X_1^2 + X_2^2 + X_3^2 = t), \ t > 0 \ ,$$

then $E(\psi((X_1 + X_2)^2))$ is equal to _____

Correct Answer:

2.5

Question Number: 39 Question Type: NAT

Let $X \sim \text{Poisson}(\lambda)$, where $\lambda > 0$ is unknown. If $\delta(X)$ is the unbiased estimator of $g(\lambda) = e^{-\lambda}(3\lambda^2 + 2\lambda + 1)$, then $\sum_{k=0}^{\infty} \delta(k)$ is equal to _____

Correct Answer:

Question Number: 40 Question Type: NAT

Correct Answer:

Question Number: 40 Question Type: NAT

Let $X_1, ..., X_n$ be a random sample from $N(\mu, 1)$ distribution, where $\mu \in \{0, \frac{1}{2}\}$. For testing the null hypothesis H_0 : $\mu=0$ against the alternative hypothesis H_1 : $\mu=\frac{1}{2}$, consider the critical region $R=\left\{(x_1,x_2,\dots,x_n): \sum_{i=1}^n x_i>c\right\},$

$$R = \left\{ (x_1, x_2, \dots, x_n) : \sum_{i=1}^n x_i > c \right\}$$

where c is some real constant. If the critical region R has size 0.025 and power 0.7054, then the value of the sample size n is equal to

Correct Answer:

Question Number: 41 Question Type: MCQ

Let X and Y be independently distributed central chi-squared random variables with degrees of freedom $m \ge 3$ and $n \ge 3$, respectively. If $E\left(\frac{X}{Y}\right) = 3$ and m + n = 14, then $E\left(\frac{Y}{X}\right)$ is equal to

(A)
$$\frac{2}{7}$$

(B)
$$\frac{3}{7}$$

(C)
$$\frac{4}{7}$$

(D)
$$\frac{5}{7}$$

Options:

Question Number: 42 Question Type: NAT

Let $X_1, X_2, ...$ be a sequence of independent and identically distributed random variables with

$$P(X_1 = 1) = \frac{1}{4}$$
 and $P(X_1 = 2) = \frac{3}{4}$. If $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, for $n = 1, 2, ...$, then

 $\lim_{n\to\infty} P(\overline{X}_n \le 1.8)$ is equal to _____

Correct Answer:

Question Number: 43 Question Type: MCQ

Let $u(x,y) = 2f(y)\cos(x-2y)$, $(x,y) \in \mathbb{R}^2$, be a solution of the initial value problem

$$2u_x + u_y = u$$

$$u(x, 0) = \cos(x).$$

Then f(1) is equal to

(A)
$$\frac{1}{2}$$

(B)
$$\frac{e}{2}$$

(D)
$$\frac{3e}{2}$$

Options:

Question Number : 44 Question Type : NAT

JETE YAM, COM Let u(x,t), $x \in \mathbb{R}$, $t \ge 0$, be the solution of the initial value problem

$$u_{tt} = u_{xx}$$

$$u(x, 0) = x$$

$$u_t(x, 0) = 1.$$

Then u(2,2) is equal to

Correct Answer:

Question Number: 45 Question Type: NAT

Let $W = \text{Span}\left\{\frac{1}{\sqrt{2}}(0,0,1,1), \frac{1}{\sqrt{2}}(1,-1,0,0)\right\}$ be a subspace of the Euclidean space \mathbb{R}^4 . Then the square of the distance from the point (1,1,1,1) to the subspace W is equal to

```
Question Number: 46 Question Type: NAT
Let T: \mathbb{R}^4 \to \mathbb{R}^4 be a linear map such that the null space of T is
                                  \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0\}
and the rank of (T-4I_4) is 3. If the minimal polynomial of T is x(x-4)^{\alpha},
then \alpha is equal to _____
Correct Answer:
Question Number: 47 Question Type: MCQ
 Let M be an invertible Hermitian matrix and let x, y \in \mathbb{R} be such that x^2 < 4y. Then
 (A) both M^2 + x M + y I and M^2 - x M + y I are singular
 (B) M^2 + x M + y I is singular but M^2 - x M + y I is non-singular
 (C) M^2 + x M + y I is non-singular but M^2 - x M + y I is singular
 (D) both M^2 + x M + y I and M^2 - x M + y I are non-singular
Options:
                                                       EXAM.COM
1. 🏁 A
2. X B
3. 🏶 C
4. 🖋 D
Question Number: 48 Question Type: MCQ
Let G = \{e, x, x^2, x^3, y, xy, x^2y, x^3y\} with o(x) = 4, o(y) = 2 and xy = yx^3. Then the number of elements in the center of the group G is equal to
(A) 1
                                                                                      (D) 8
Options:
1. 🏁 A
2. 🖋 B
3. % C
4 × D
Question Number: 49 Question Type: NAT
The number of ring homomorphisms from \mathbb{Z}_2 \times \mathbb{Z}_2 to \mathbb{Z}_4 is equal to ____
```

Question Number: 50 Question Type: MCQ

Correct Answer:

Let $p(x) = 9x^5 + 10x^3 + 5x + 15$ and $q(x) = x^3 - x^2 - x - 2$ be two polynomials in $\mathbb{Q}[x]$. Then, over \mathbb{Q} ,

- (A) p(x) and q(x) are both irreducible
- (B) p(x) is reducible but q(x) is irreducible
- (C) p(x) is irreducible but q(x) is reducible
- (D) p(x) and q(x) are both reducible

Options:

- 1. 🏁 A
- 2. 🏶 B
- 3. 🎺 C
- 4. * D

Question Number: 51 Question Type: NAT

Consider the linear programming problem

Maximize 3x + 9y, subject to $2y - x \le 2$ $3y - x \ge 0$ $2x + 3y \le 10$ $x, y \ge 0$. ive function is equal to

Then the maximum value of the objective function is equal to

Correct Answer:

24

Question Number: 52 Question Type: MCQ

Let $S = \{(x, \sin \frac{1}{x}) : 0 < x \le 1\}$ and $T = S \cup \{(0,0)\}$. Under the usual metric on \mathbb{R}^2 ,

- (A) S is closed but T is NOT closed
- (B) T is closed but S is NOT closed
- (C) both S and T are closed
- (D) neither S nor T is closed

Options:

- 1. 🏁 A
- 2. X B
- 3. X C
- 4 🗸 D

Question Number: 53 Question Type: MCQ

Let
$$H = \left\{ (x_n) \in \ell_2 : \sum_{n=1}^{\infty} \frac{x_n}{n} = 1 \right\}$$
. Then H

(A) is bounded

(B) is closed

(C) is a subspace

(D) has an interior point

Options:

- 1. 🏁 A
- 2. 🖋 B

- 3. X C
- 4. * D

Question Number: 54 Question Type: MCQ

Let V be a closed subspace of $L^2[0,1]$ and let $f,g \in L^2[0,1]$ be given by f(x) = x and $g(x) = x^2$. If $V^{\perp} = \text{Span}\{f\}$ and Pg is the orthogonal projection of g on V, then $(g - Pg)(x), x \in [0, 1], is$

- (A) $\frac{3}{4}x$
- (B) $\frac{1}{4}x$
- (C) $\frac{3}{4}x^2$
- (D) $\frac{1}{4}x^2$

Options:

- 1. 🗸 A
- 2. X B
- 3. 🏶 C
- 4. * D

Question Number: 55 Question Type: NAT

Let p(x) be the polynomial of degree at most 3 that passes through the points (-2, 12), (-1, 1),(0,2) and (2,-8). Then the coefficient of x^3 in p(x) is equal to

$$\int_{0}^{2} p(\alpha) dx = p(\alpha) + p(\beta)$$

Question Number : 56 Question Type : NAT If, for some $\alpha,\beta\in\mathbb{R}$, the integration formula $\int_0^2 p(x)dx = p(\alpha) + p(\beta)$ nolds for all polynomials p(x) of degree at most 3, then the way rect Answer holds for all polynomials p(x) of degree at most 3, then the value of $3(\alpha - \beta)^2$ is equal to _____

Correct Answer:

4

Question Number: 57 Question Type: NAT

Let y(t) be a continuous function on $[0, \infty)$ whose Laplace transform exists. If y(t) satisfies

$$\int_0^t (1-\cos(t-\tau)) y(\tau) d\tau = t^4,$$

then y(1) is equal to

Question Number: 58 Question Type: NAT

Consider the initial value problem

$$x^2y'' - 6y = 0$$
, $y(1) = \alpha$, $y'(1) = 6$.

If $y(x) \to 0$ as $x \to 0^+$, then α is equal to _____

Correct Answer:

Question Number: 59 Question Type: MCQ

Define $f_1, f_2: [0,1] \to \mathbb{R}$ by

$$f_1(x) = \sum_{n=1}^{\infty} \frac{x \sin(n^2 x)}{n^2}$$
 and $f_2(x) = \sum_{n=1}^{\infty} x^2 (1 - x^2)^{n-1}$.

Then

- (A) f₁ is continuous but f₂ is NOT continuous
- (B) f_2 is continuous but f_1 is NOT continuous
- (C) both f₁ and f₂ are continuous
- (D) neither f₁ nor f₂ is continuous

Options:

- 1. 🗸 A
- 2. 🏶 B
- 3. 🏶 C
- 4 × D

Question Number: 60 Question Type: NAT

SETNETE YAM. COM Consider the unit sphere $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ and the unit normal vector $\hat{n} = (x, y, z)$ at each point (x, y, z) on S. The value of the surface integral

$$\iint_{S} \left\{ \left(\frac{2x}{\pi} + \sin(y^{2}) \right) x + \left(e^{z} - \frac{y}{\pi} \right) y + \left(\frac{2z}{\pi} + \sin^{2} y \right) z \right\} d\sigma$$

is equal to

Correct Answer:

Question Number: 61 Question Type: NAT

Let $D = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 1000, \ 1 \le y \le 1000\}$. Define

$$f(x,y) = \frac{xy}{2} + \frac{500}{x} + \frac{500}{y}.$$

Then the minimum value of f on D is equal to

Correct Answer:

150

Question Number: 62 Question Type: MCQ

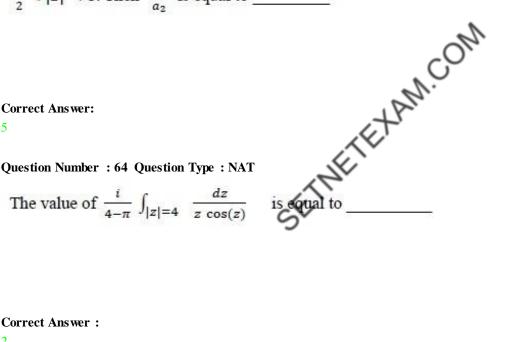
Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Then there exists a non-constant analytic function f on \mathbb{D} such that for all n = 2, 3, 4, ...

(A) $f\left(\frac{\sqrt{-1}}{n}\right) = 0$

(B) $f\left(\frac{1}{n}\right) = 0$

(C) $f\left(1 - \frac{1}{n}\right) = 0$

(D) $f\left(\frac{1}{2} - \frac{1}{n}\right) = 0$


Options:

- 1. 🏁 A
- 2. 🎏 B
- з. 🗸 С
- 4. * D

Question Number: 63 Question Type: NAT

Let $\sum_{n=-\infty}^{\infty} a_n z^n$ be the Laurent series expansion of $f(z) = \frac{1}{2z^2 - 13z + 15}$ in the annulus $\frac{3}{2} < |z| < 5$. Then $\frac{a_1}{a_2}$ is equal to _____

The value of
$$\frac{i}{4-\pi} \int_{|z|=4} \frac{dz}{z \cos(z)}$$

Question Number: 65 Question Type: MCQ

Suppose that among all continuously differentiable functions y(x), $x \in \mathbb{R}$, with y(0) = 0 and $y(1) = \frac{1}{2}$, the function $y_0(x)$ minimizes the functional

$$\int_0^1 (e^{-(y'-x)} + (1+y)y')dx.$$

Then $y_0\left(\frac{1}{2}\right)$ is equal to

(A) 0

(B) $\frac{1}{9}$

(C) $\frac{1}{4}$

(D) $\frac{1}{2}$

Options:

1. **※** A 2. **✓** B

3. **%** C

4. 🗱 D

SETNETE YAM.COM