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n 

Notations and Symbols used 

 

ℝ : Set of all real numbers 

ℂ : Set of all complex numbers 

ℤ : Set of all integers 

 

F : A field 

 
ℂ : The set of all n-tuples of complex numbers 

 

F n 

 

R1  R2 ... Rn 

: The set of all n-tuples over F 
 

: Cartesian product of rings R1, R2 ,..., Rn 

 

Dx f (x, y) 

N (, 2 ) 

: Partial derivative with respect to x. 

: Normal distribution with mean  and variance  2 
 

E( X ) : Expectation of X 
 

Cov(X ,Y ) : Covariance between X and Y 
 

Sn : The group of all permutations on n symbols 
 

Pn : The set of all polynomials of degree at most n 
 

Cn : Cyclic Group of Order n 
 

Z(G) : Centre of the Group G 

i = −1 
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Q.  1 – Q. 25 carry one mark each. 
 

Q.1 The straight lines L1 : x = 0, L2 : y = 0 and L3 : x + y = 1 are mapped by the transformation 

w = z2 into the curves C , C and C respectively. The angle of intersection between the curves at 

w = 0 is 

1 2 3 

(A) 0 (B)  /4  (C)  /2  (D)  
 

Q.2 In a topological space, which of the following statements is NOT always true : 

(A) Union of any finite family of compact sets is compact. 
(B) Union of any family of closed sets is closed. 
(C) Union of any family of connected sets having a non empty intersection is connected. 

(D) Union of any family of dense subsets is dense. 
 

Q.3 Consider the following statements: 
P: The family of subsets 

 
A =


−  

1 
, 

 
 

1 
, n = 

 
 

 
satisfies the finite intersection property. 

 n  n n 

 1, 2,... 

     
0, 

 
x = y 

Q: On an infinite set X , a metric d : X  X → R is defined as d (x, y) =  
1, x  y 

.
 

The metric space ( X , d ) is compact. 

R: In a Frechet ( T1 ) topological space, every finite set is closed. 

S: If f : R → X is continuous, where R is given the usual topology and ( X , ) is a Hausdorff 

( T2 ) space, then f is a one-one function. 

Which of the above statements are correct? 

(A) P and R (B) P and S (C) R and S (D) Q and S 

 
Q.4 Let H be a Hilbert space and S ⊥ denote the orthogonal complement of a set S  H . Which of 

the following is INCORRECT? 

(A) For S , S  H; S  S  S ⊥  S ⊥ (B) S  (S ⊥ )⊥ 
1 2 1 2 1 2 

(C) {0}⊥ = H (D) S ⊥  is always closed. 
 

Q.5 Let H be a complex Hilbert space, T :H → H be a bounded linear operator and let T * denote 

the adjoint of T . Which of the following statements are always TRUE? 

P: x, y  H , Tx, y = x,T * y Q: x, y  H , x,Ty = T * x, y 

R: x, y  H , x,Ty = x,T * y S: x, y  H , Tx,Ty = T * x,T * y 
 

(A) P and Q (B) P and R (C) Q and S (D) P and S 
 

Q.6 Let X ={a,b, c} and let =,{a},{b},{a,b}, X be a topology defined on X . Then which of 

the following statements are TRUE? 

P: ( X , ) is a Hausdorff space. Q:   ( X , ) is a regular space. 

R: ( X , ) is a normal space. S: ( X , ) is a connected space. 

(A) P and Q (B) Q and R (C) R and S (D) P and S 
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5 5 

5 5 

Q.7 Consider the statements 

P: If X is a normed linear space and M  X 
 

 

is a subspace, then the closure M is also a subspace 
of X . 

Q: If X is a Banach space and  xn 

convergent. 

is an absolutely convergent series in X , then  xn   is 

R: Let M1 and M 2 be subspaces of an inner product space such that M1  M2 ={0} .Then 

m  M , m  M ; m + m 2 = m 2 + m 2 . 
1 1 2 2 1 2 1 2 

S: Let f : X → Y be a linear transformation from the Banach Space X into the Banach space Y . 

If f is continuous, then the graph of f is always compact. 

The correct statements amongst the above are: 

(A) P and R only (B) Q and R only (C) P and Q only (D) R and S only 

Q.8 A continuous random variable X has the probability density function 

 
f (x) = 

 3 
 
 5 


0, 

− 
3 

x 

e 5 , x  0 

x  0. 

The probability density function of Y = 3X + 2 is 
 

 

(A) 

 
f ( y) = 

 1 − 
1 

( y−2) 

 e , 
 5 

 

y  2 

 

(B) (B) 

 
f ( y) = 

 2 − 
2 

( y−2) 

 e , 
 5 

 

y  2 


0, y  2 

0, y  2 

 

(C) (C) 

 
f ( y) = 

 3 − 
3

( y−2) 

 e , 
 5 

y  2 
 

(D) (D) 

 
f ( y) = 

 4 − 
4 

( y−2) 

 e , 
 5 

y  2 


0, y  2 

Q.9 A simple random sample of size 10 from 


0, y  2 

N (, 2 ) gives 98% confidence interval (20.49, 23.51). 

Then the null hypothesis H0 :  = 20.5 against HA  :   20.5 

(A) can be rejected at 2% level of significance 
(B) cannot be rejected at 5% level of significance 
(C) can be rejected at 10% level of significance 
(D) cannot be rejected at any level of significance 

Q.10 For the linear programming problem 

Maximize 

Subject to 

z = x1 + 2x2 + 3x3 − 4x4 

2x1 + 3x2 − x3 − x4 = 15 

6x1 + x2 + x3 −3x4 = 21 

8x1 + 2x2 + 3x3 − 4x4 = 30 

x1, x2 , x3 , x4  0 , 

x1 = 4, x2 = 3, x3 = 0, x4 = 2 is 

(A) an optimal solution 
(B) a degenerate basic feasible solution 
(C) a non-degenerate basic feasible solution 
(D) a non-basic feasible solution 
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e − 
2e 

Q.11 Which one of the following statements is TRUE? 

(A) A convex set cannot have infinite many extreme points. 
(B) A linear programming problem can have infinite many extreme points. 
(C) A linear programming problem can have exactly two different optimal solutions. 
(D) A linear programming problem can have a non-basic optimal solution. 

Q.12 Let  = e2i/5 and the matrix 

1   2 
0   2 

 3  4  

 3  4  
  

M = 0 0  2  3  4  
. 

  
0 0 0  3  4  
  

0  0  0 0  4 
 

Then the trace of the matrix I + M + M 2 is 

(A) − 5 (B) 0 (C) 3 (D) 5 

Q.13 Let V = ℂ2 be the vector space over the field of complex numbers and B ={(1,i), (i,1)}be a given 

ordered basis of V. Then for which of the following, B *={ f1, f2} is a dual basis of B over ℂ? 

 
(A) f (z , z ) = 

1 
(z − iz ) , 
 

f (z , z ) = 
1 

(z  + iz ) 
 

1     1 2 
2 

1 2 2 1 2 
2 

1 2 

 
(B) f (z , z ) = 

1 
(z + iz ) , 
 

f (z , z ) = 
1 

(iz + z ) 
 

1     1 2 
2 

1 2 2 1 2 
2 

1 2 

 
(C) f (z , z ) = 

1 
(z − iz ) , 
 

f (z , z ) = 
1 

(−iz + z ) 
 

1     1 2 
2 

1 2 2 1 2 
2 

1 2 

 
(D) f (z , z ) = 

1 
(z + iz ) , 
 

f (z , z ) = 
1 

(−iz − z ) 
 

1     1 2 
2 

1 2 2 1 2 
2 

1 2 

Q.14 Let R = ℤℤℤ and I = ℤℤ{0}. Then which of the following statement is correct? 

(A) I is a maximal ideal but not a prime ideal of R . 
(B) I is a prime ideal but not a maximal ideal of R . 
(C) I is both maximal ideal as well as a prime ideal of R . 
(D) I is neither a maximal ideal nor a prime ideal of R . 

Q.15 The function u(r, ) satisfying the Laplace equation 

2u 
+ 

1 u 
+ 

1 
 

  

2u 
=   2 

r2 
r r r2  2 

0,
 

e r e 

subject to the conditions u(e, ) = 1, u(e2, ) = 0 is 
   r − e2  

(A) ln(e / r) 

 
Q.16 The functional 

1 

(B) ln(e / r2 ) (C)  ln(e2 / r) (D)  sin n 
n=1   

( y2 + ( y + 2 y) y  + kxyy + y2 )dx , 
0 

is path independent if k equals 

y(0) = 0, y(1) =1, y(0) = 2, y(1) = 3 

(A) 1 (B) 2 (C) 3 (D) 4 
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x y 

  

  

  

  

  

y = c x 

 

Q.17 If a transformation y = uv transforms the given differential equation 

f (x) y −  4 f (x) y+  g(x) y = 0 into the equation of the form v + h(x)v = 0 , then u must be 
 

(A) 1/ f 2 (B) xf (C)   1/ 2 f (D) f 2 

 

 

Q.18 The expression 
1 

sin(x − y) is equal to 

D2 − D2 
 

 
(A) − 

x 
cos(x − y) 

2 

 
(B) − 

x 
sin(x − y) + cos(x − y) 

2 

(C) − 
x 

cos(x − y) + sin(x − y) 
2 

(D)   
3x 

sin(x − y) 
2 

Q.19 The function (x) satisfying the integral equation 
x 

x2 

ex−( ) d = 

0 2 

is 

x2 x2 x2 x2 

(A) 
2 

(B) x + (C) 
2 

x − (D) 1+ 
2 2 

Q.20 Given the data: 
 

x 1 2 3 4 5 
y –1 2 –3 4 –5 

If the derivative of y(x) is approximated as: y(x )  
1 

(y + 
1 

2 y 
  

− 
1 

3 y ) , then the value 
 

of y(2) is 

k 
h 

k 
2

 k 
4 

k 

(A) 4 (B) 8 (C ) 12 (D) 16 
 

1 0 0 

Q.21 If A = 1 0 1 
, then 

0 1 0 

 1 0 0 

A50 is 
 

 

 
 1 0 0 

(A) 
50 1 0 

50 0 1 

 1 0 0 

(C) 
25 1 0 

25 0 1 

(B) 
48 1 0 

48 0 1 

 1 0 0 

(D) 
24 1 0 

24 0 1 
 

 

Q.22 If 

 
r +m 

m 

 
is assumed to be a solution of the differential equation 

m=0 

x2 y  − xy − 3(1+ x2 ) y = 0 , 

then the values of r are 

(A) 1 and 3 (B) –1 and 3 (C) 1 and –3 (D) –1 and –3 
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2 2 
  

2x 

3 3 

 

Q.23 Let the linear transformation T :F 2 → F 3 be defined by T (x , x ) = (x , x + x , x ) . Then the 

nullity of T is 

1 2 1 1 2 2 

(A) 0 (B) 1 (C) 2 (D) 3 

Q.24 The approximate eigenvalue of the matrix 

−15 4 3 
A =  10 −12 6 

  

 20 −4 2 

obtained after two iterations of Power method, with the initial vector [1 1 1]T , is 

(A) 7.768 (B) 9.468 (C) 10.548 (D) 19.468 

Q.25 The root of the equation 
method, is 

xex = 1 between 0 and 1, obtained by using two iterations of bisection 

(A) 0.25 (B) 0.50 (C) 0.75 (D) 0.65 

Q. 26 to Q. 55 carry two marks each. 

 Q.26 Q.26 

 1 
− 

(a − 2)2 

+ 4
 

dz = 4 
 

Let  (z − 2)4 z 

 , where the close curve C is the triangle having vertices at 

C   

 −1− i  
i,   

  

and 
 1− i  

, the integral being taken in anti-clockwise direction. Then one value of 

  

a is 

(A) 1+ i 

 
(B) 2 + i 

 
(C) 3 + i 

 
(D) 4 + i 

 Q.27 The Lebesgue measure of the set A = 


0  x  1: x sin 
   

 0
 

is 
    
    

(A) 0 (B) 1 (C) ln2 (D) 1− ln 

Q.28 Which of the following statements are TRUE? 

P : The set {x  R : cos x 
 1

} is compact. 
2 

Q : The set {x  R :tan x isnot differentiable} is complete. 
 

 

R : The set {x  R :  
n=0 

(−1)n x2n+1 

 
 

(2n +1)! 

 

isconvergent} is bounded. 

S : The set {x  R : f (x) =cos x has a local maxima} is closed. 

(A) P and Q (B) R and S (C) Q and S (D) P and S 

Q.29 If a random variable X assumes only positive integral values, with the probability 
2  1 

x−1

 

 

then E( X ) is 

P( X = x) =     
    

, x =1, 2, 3,... , 

(A) 2/9 (B) 2/3 (C) 1 (D)  3/2 

 

2 
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f ( x) = 

 

 

Q.30 The probability density function of the random variable X is 

 1 
e− x /  , 

 

0, 

x  0 

x  0, 

where   0 . For testing the hypothesis H0 : = 3 against HA  : = 5 , a test is given as “Reject 

H0 if X  4.5 ”. The probability of type I error and power of this test are, respectively, 
 

(A) 0.1353 and 0.4966 (B) 0.1827 and 0.379 

(C) 0.2021 and 0.4493 (D) 0.2231 and 0.4066 

 
Q.31 The order of the smallest possible non trivial group containing elements x and y such that 

x7 = y2 = e and yx = x4 y is 

(A) 1 (B) 2 (C) 7 (D) 14 
 

Q.32 The number of 5-Sylow subgroup(s) in a group of order 45 is 

(A) 1 (B) 2 (C) 3 (D) 4 
 

Q.33 The solution of the initial value problem 

y +  2y+10y = 6  (t), y(0) = 0, y(0) = 0 , 

where  (t) denotes the Dirac-delta function, is 

(A) 2 et sin 3t (B) 6 et sin 3t (C) 2 e−t sin 3t 

 
 

(D) 6 e−t sin 3t 
 

 Q.34 Let 2 2 =cos + i sin , M = 
 0

 i 
,  N =

 0  and 
 G = M , N  be the group 

3 3 
 

i 0  0 2  
    

generated by the matrices M and N under matrix multiplication. Then 

(A) G Z (G)  C6 (B) G Z (G)  S3 (C) G Z (G)  C2 (D) G Z (G)  C4 
 

Q.35 The flux of the vector field u = xiˆ + yˆj + zkˆ flowing out through the surface of the ellipsoid 

x2 y2 z2 

+ + =1 , a  b  c  0 , 
a2 b2 c2 

is 

(A)  abc (B) 2 abc (C) 3 abc (D) 4 abc 
 

 
Q.36 The integral surface satisfying the partial differential equation 

z 
+ z2 

z 
= 0 and passing through 

  

 
the straight line x = 1, y = z is 

x y 

 

(A) (x −1)z + z2 = y2 (B) x2 + y2 − z2 = 1 

(C) ( y − z)x + x2 = 1 (D) (x −1)z2 + z = y 

 
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1 

 

 

 

Q.37 The diffusion equation 
2u 

= 
u 

 

x2 
t 

,
 

u = u(x,t), u(0,t) = 0 = u( ,t), u(x, 0) = cos x sin 5x 

admits the solution 

 (A) 
e− 36t 

sin 6x + 
 

 

 
20t  

 (B) e− 36t 


 

 
 

 
+ 20t  

2 
e sin 4x 2 sin 4x e sin 6x 

 (C) 
e− 20t 

sin 3x + 
 

 

15t  
 (D) e− 36t 


 

 
 

+ 20t  

2 
e sin 5x 2 sin 5x e sin x 

 

Q.38 Let f (x) and xf (x) be the particular solutions of a differential equation 

y +  R(x) y+  S(x) y = 0 . 

Then the solution of the differential equation y +  R(x) y+  S(x) y = f (x) is 
 

 x2   x2  
(A) y =  − 

2 
+ x  +   f (x) (B) y =  

2 
+ x  +   f (x) 

 
(C) 

  

y = (−x2 +x  +  ) f (x) 
 

(D) 

  

y = (x3 +x  +  ) f (x) 
 

Q.39 Let the Legendre equation (1− x2 ) y −  2xy+ n(n +1) y = 0 have nth degree polynomial solution 
y (x) such that y (1) = 3 . If ( y2 (x) + y2 (x))dx = 

144
 

 
 

, then n is 

n n  
−1 

n n−1 15 

(A) 1 (B) 2 (C) 3 (D) 4 

Q.40 The maximum value of the function 

xy + yz + zx − a = 0, a  0 is 

f (x, y, z) = xyz subject to the constraint 

3 

(A) a 2
 (B)  

1 

(a 3)3/ 2 (C)  (3 a)3/ 2 

4 4 e 

(D) (3a 2)3/ 2 

Q.41 The functiona l ( y2 + 4 y2 + 8yex )dx, y(0) = − , y(1) = − possesses : 
 

0 

 

 

(A) strong minima on 

 
(C) weak maxima on 

 
y = −  

1 
ex 

3 

y = −  
1 

ex 
3 

3 3 

 
(B) strong minima on 

 
(D) strong maxima on 

 
y = −  

4 
ex 

3 

y = −  
4 

ex 
3 

Q.42 A particle of mass m is constrained to move on a circle with radius a which itself is rotating about 

its vertical diameter with a constant angular velocity  . Assume that the initial angular velocity is 

zero and g is the acceleration due to gravity. If  be the inclination of the radius vector of the 

particle with the axis of rotation and  denotes the derivative of  with respect to t , then the 

Lagrangian of this system is 

 
(A) 

 
(C) 

1 
ma2 ( 2 + 2 sin2  ) + mga cos 

2 
1 

ma2 ( 2 + 22 cos ) − mga sin 
2 

 
(B) 

 
(D) 

 
1 

ma2 ( 2 + 2 sin ) − mga sin 
2 

1 
ma2 ( 2 +  sin 2 ) + mga sin 

2 
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Q.43 For the matrix  
 2 3 + 2i −4 

M = 3 − 2i 5 6i  , 
  

 −4 −6i 3  

which of the following statements are correct? 

P : M is skew-Hermitian and iM is Hermitian 
Q : M is Hermitian and iM is skew Hermitian 
R : eigenvalues of M are real 
S : eigenvalues of iM are real 

(A) P and R only (B) Q and R only (C) P and S only (D) Q and S only 
 

Q.44 Let  T :P3  → P3   be  the  map  given  by 

x 

T ( p(x)) =  p(t) dt . If the matrix of  T relative to the 
1 

standard bases B = B = 1, x, x2, x3is M and M  denotes the transpose of the matrix M , then 
1 2 

M + M  is 

 0 −1 −1 −1 −1 0 0 2  
−1 2 0 0   0 −1 1 0  

(A)   (B)   
 0 0 2 0   0 1 −1 0   

0 0 0 2 
  

2 0 2 − 

 

   1 
 

 2 0 0 −1 0 2 2 2  
 0 2 1 0  2 −1 0 0  

(C)   (D)   
 0 1 2 −1 2 0 −1 0  
−1 0 −1 0 


 


2 0 0 − 


 

   1 
 

Q.45 Using Euler’s method taking step size = 0.1, the approximate value of y obtained corresponding to 

x = 0.2 for the initial value problem 
dy 

= x2 + y2 and 
dx 

y(0) = 1, is 

(A) 1.322 (B) 1.122 (C) 1.222 (D)  1.110 

Q.46 The following table gives the unit transportation costs, the supply at each origin and the demand of 
each destination for a transportation problem. 

Destination 
 D1 D2 D3 D4 Supply 

O1 3 4 8 7 60 

Origin O2 7 3 7 6 80 
O3 3 9 3 4 100 

 
Let 

 
xij 

Demand 40 70 50 80 

denote the number of units to be transported from origin i to destination j. If the u-v method 

is applied to improve the basic feasible solution given by x12 = 60, x22 = 10, x23 = 50, x24 = 20, 

x31 = 40 and x34 = 60, then the variables entering and leaving the basis, respectively, are 

(A) x11 and x24 (B) x13 and x23 (C) x14 and x24 (D) x33 and x24 
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      

Q.47 Consider the system of equations 

5 −1   1  x  10 

2 4 0  y = 12 
. 

1 1 5  z  −1 

Using Jacobi’s method with the initial guess x (0) y(0) z(0)  
T   

= 2.0 3.0 0.0
T  

,   the 

approximate solution  x (2) 
 

(A) 2.64 −1.70 −1.12 

(B) 2.64 −1.70 1.12
T

 

(C) 2.64 1.70 −1.12
T

 

(D) 2.64 1.70 1.12
T

 

 
Common Data Questions 

y(2) 

 
T 

z(2)  
T 

after two iterations, is 

 

Common Data for Questions 48 and 49: 
 

The optimal table for the primal linear programming problem: 

Maximize z = 6x1 +12x2 +12x3 − 6x4 

Subject to x1 + x2 + x3 = 4 

x1 + 4x2 + x4 = 8 

x1, x2 , x3 , x4  0, 

is 
 

Basic variables ( xB ) x1 x2 x3 x4 RHS Constants (b) 

x3 3/4 0 1 -1/4 2 

x2 1/4 1 0 1/4 2 

z j − c j  
6 0 0 6 z = 48 

 

Q.48 If y1 and y2 are the dual variables corresponding to the first and second primal constraints, then 

their values in the optimal solution of the dual problem are, respectively, 
 

(A) 0 and 6 (B) 12 and 0 (C) 6 and 3 (D) 4 and 4 
 

Q.49 If the right hand side of the second constraint is changed from 8 to 20, then in the optimal solution 
of the primal problem, the basic variables will be 

(A) x1 and x2 (B) x1 and x3 (C) x2 and x3 (D) x2 and x4 
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f (x, y) = 


5 

Common Data for Questions 50 and 51: 
1 

Consider the Fredholm integral equation u ( x) = x +   xe t  u (t) dt . 
0 

 

Q.50 The resolvent kernel R(x,t;) for this integral equation is 

xet 
(A) 

1−   

 xet 
(B) 

1+   

 

(C) 
xet 

 
 

1+   2 

 
(D) 

xet 
 

 

1−   2 
 

Q.51 The solution of this integral equation is 

 
(A) 

x +1 

1−  

 
(B) 

x2 

 
 

1−   2 

 
(C) 

x 
 

 

1+  2 

 
(D) 

x 
 

 

1−  

 

Linked Answer Questions 

Statement for Linked Answer Questions 52 and 53: 

The joint probability density function of two random variables X and Y is given as 
6 

(x + y2 ), 0  x  1, 0  y  1 
 

 0, elsewhere 

Q.52 E( X ) and E(Y ) are, respectively, 

(A) 
2 

and 
3

 (B) 
3 

and 
3
 (C) 

3 
and 

6
 (D) 

4 
and 

6
 

5 5 5 5 5 5 5 5 
 

Q.53 Cov(X ,Y ) is 

(A) − 0.01 (B) 0 (C) 0.01 (D) 0.02 
 

Statement for Linked Answer Questions 54 and 55: 
z2 + z  

Consider the functions f (z) = 
(z +1)2 

and g(z) = sinh(z − 
2 

) ,  0. 

Q.54 The residue of f (z) at its pole is equal to 1. Then the value of  is 

(A) −1 (B)   1 (C) 2 (D) 3 
 

Q.55 For the value of  obtained in Q.54, the function g(z) is not conformal at a point 

 
(A) 

 (1+ 3i) 

6 

 
(B) 

 (3 + i) 

6 

 

(C) 
2 

3 
(D) 

i
 

2 
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General Aptitude (GA) Questions (Compulsory) 

Q. 56 – Q. 60 carry one mark each. 

Q.56 Choose the most appropriate word from the options given below to complete the following 
sentence: 

Given the seriousness of the situation that he had to face, his was impressive. 

(A) beggary (B) nomenclature (C) jealousy (D)  nonchalance 
 

Q.57 Choose the most appropriate alternative from the options given below to complete the following 
sentence: 

If the tired soldier wanted to lie down, he the mattress out on the balcony. 

(A) should take 
(B) shall take 
(C) should have taken 
(D) will have taken 

 
Q.58 If (1.001)1259 = 3.52 and (1.001)2062 = 7.85, then (1.001)3321 = 

(A) 2.23 (B) 4.33 (C) 11.37 (D)  27.64 

 
Q.59 One of the parts (A, B, C, D) in the sentence given below contains an ERROR. Which one of the 

following is INCORRECT? 
 

I requested that he should be given the driving test today instead of tomorrow. 

(A) requested that 
(B) should be given 
(C) the driving test 
(D) instead of tomorrow 

 
Q.60 Which one of the following options is the closest in meaning to the word given below? 

 
Latitude 

(A) Eligibility (B) Freedom (C) Coercion (D) Meticulousness 

 

 

Q. 61 - Q. 65 carry two marks each. 

Q.61 There are eight bags of rice looking alike, seven of which have equal weight and one is slightly 
heavier. The weighing balance is of unlimited capacity. Using this balance, the minimum number 
of weighings required to identify the heavier bag is 

(A) 2 (B) 3 (C) 4 (D) 8 
 

Q.62 Raju has 14 currency notes in his pocket consisting of only Rs. 20 notes and Rs. 10 notes. The total 
money value of the notes is Rs. 230. The number of Rs. 10 notes that Raju has is 

(A) 5 (B) 6 (C) 9 (D) 10 
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Q.63 One of the legacies of the Roman legions was discipline. In the legions, military law prevailed 

and discipline was brutal. Discipline on the battlefield kept units obedient, intact and fighting, 

even when the odds and conditions were against them. 
 

Which one of the following statements best sums up the meaning of the above passage? 

(A) Thorough regimentation was the main reason for the efficiency of the Roman legions even in 
adverse circumstances. 

(B) The legions were treated inhumanly as if the men were animals. 
(C) Discipline was the armies’ inheritance from their seniors. 
(D) The harsh discipline to which the legions were subjected to led to the odds and conditions being 

against them. 

 
Q.64 A and B are friends. They decide to meet between 1 PM and 2 PM on a given day. There is a 

condition that whoever arrives first will not wait for the other for more than 15 minutes. The 
probability that they will meet on that day is 

(A) 1/4 (B) 1/16 (C) 7/16 (D) 9/16 
 

Q.65 The data given in the following table summarizes the monthly budget of an average household. 
 

Category Amount (Rs.) 

Food 4000 
Clothing 1200 

Rent 2000 
Savings 1500 
Other expenses 1800 

 

The approximate percentage of the monthly budget NOT spent on savings is 

(A) 10% (B) 14% (C) 81% (D) 86% 

 
 

 

END OF THE QUESTION PAPER 
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