
GATE 2022 General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark each.	
Q.1	Mr. X speaksJapaneseChinese.
(A)	neither / or
(B)	either / nor
(C)	neither / nor
(D)	also / but
	COL
Q.2	A sum of money is to be distributed among P, Q, R, and S in the proportion 5 : 2 : 4 : 3, respectively. If R gets ₹ 1000 more than S, what is the share of Q (in ₹)?
(A)	500
(B)	1000
(C)	1500
(D)	2000

Q.3	A trapezium has vertices marked as P, Q, R and S (in that order anticlockwise). The side PQ is parallel to side SR.
	Further, it is given that, $PQ = 11$ cm, $QR = 4$ cm, $RS = 6$ cm and $SP = 3$ cm.
	What is the shortest distance between PQ and SR (in cm)?
(A)	1.80
(B)	2.40
(C)	4.20
(D)	5.76 COM
	5.76 SET METERANA

Q. 6 – Q. 10 Carry TWO marks each.

Q.6	Mosquitoes pose a threat to human health. Controlling mosquitoes using chemicals may have undesired consequences. In Florida, authorities have used genetically modified mosquitoes to control the overall mosquito population. It remains to be seen if this novel approach has unforeseen consequences. Which one of the following is the correct logical inference based on the information in the above passage?
(A)	Using chemicals to kill mosquitoes is better than using genetically modified mosquitoes because genetic engineering is dangerous
(B)	Using genetically modified mosquitoes is better than using chemicals to kill mosquitoes because they do not have any side effects
(C)	Both using genetically modified mosquitoes and chemicals have undesired consequences and can be dangerous
(D)	Using chemicals to kill mosquitoes may have undesired consequences but it is not clear if using genetically modified mosquitoes has any negative consequence

Q.7	Consider the following inequalities.	
	(i) $2x - 1 > 7$	
	(ii) $2x - 9 < 1$	
	Which one of the following expressions below satisfies the above two inequalities?	
(A)	$x \leq -4$	
	$-4 < x \le 4$	
(C)	4 < x < 5	
(D)	$x \ge 5$	
	(C) $4 < x < 5$ (D) $x \ge 5$ Q.8 Four points P(0, 0, 0, Q(0, -3), R(-2, -1), and S(2, -1) represent the vertices	
	Four points $P(0, 0)$, $Q(0, -3)$, $R(-2, -1)$, and $S(2, -1)$ represent the vertices	
Q.8	of a quadrilateral.	
	What is the area enclosed by the quadrilateral?	
(A)	4	
(B)	$4\sqrt{2}$	
(C)	8	
(D)	8√2	

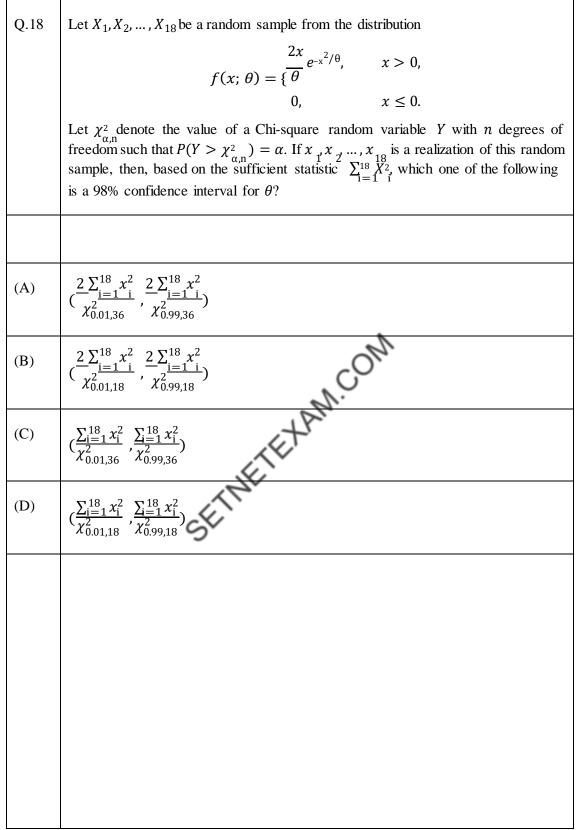
Q.9	In a class of five students P, Q, R, S and T, only one student is known to have copied in the exam. The disciplinary committee has investigated the situation and recorded the statements from the students as given below.
	Statement of P: R has copied in the exam.
	Statement of Q: S has copied in the exam.
	Statement of R: P did not copy in the exam.
	Statement of S: Only one of us is telling the truth.
	Statement of T: R is telling the truth.
	The investigating team had authentic information that S never lies.
	Based on the information given above, the person who has copied in the exam is
(A)	R ETHER
(B)	P
(C)	Q
(D)	Т

Q.10	Consider the following square with the four corners and the center marked as P, Q, R, S and T respectively. Let X, Y and Z represent the following operations: X: rotation of the square by 180 degree with respect to the
	S-Q axis.
	Y: rotation of the square by 180 degree with respect to the P-R axis.
	Z: rotation of the square by 90 degree clockwise with respect to the axis
	perpendicular, going into the screen and passing through the point T.
	Consider the following three distinct sequences of operation (which are applied in the left to right order).
	(1) XYZZ
	in the left to right order). (1) XYZZ (2) XY (3) ZZZZ
	Which one of the following statements is correct as per the information provided above?
(A)	The sequence of operations (1) and (2) are equivalent
(B)	The sequence of operations (1) and (3) are equivalent
(C)	The sequence of operations (2) and (3) are equivalent
(D)	The sequence of operations (1), (2) and (3) are equivalent

Q.11	Let M be a 2 × 2 real matrix such that $(I + M)^{-1} = I - \alpha M$, where α is a non-zero real number and I is the 2 × 2 identity matrix. If the trace of the matrix M is 3, then the value of α is
(A)	$\frac{3}{4}$
(B)	$\frac{1}{3}$
(C)	$\frac{1}{2}$ COM
(D)	$\frac{1}{4}$ ETAM.
	3 1 2 CON 1 4 SETNEEEXAM. SETNEEEXAM.

GATE 2022 Statistics (ST)

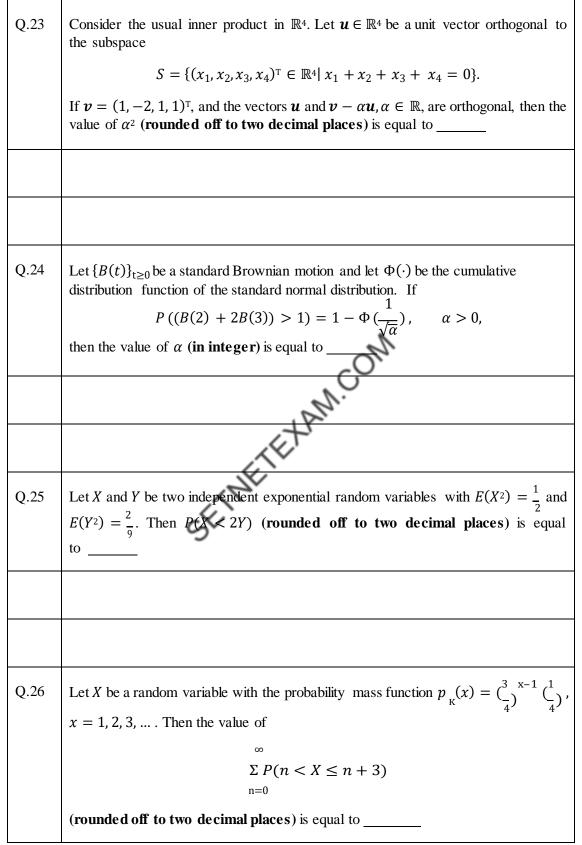
Q.12	Let $\{X(t)\}_{t\geq 0}$ be a linear pure death process with death rate $\mu_i = 5i, i = 0, 1,, N, N \geq 1$. Suppose that $p_i(t) = P(X(t) = i)$. Then the system of forward Kolmogorov's equations is
(A)	$\frac{dp_{i}(t)}{dt} = 5(i+1)p_{i+1}(t) + 5ip_{i}(t) \text{and} \frac{dp_{N}(t)}{dt} = 5Np_{N}(t)$
	for $i = 0, 1, 2,, N - 1$ with initial conditions $p_i(0) = 0$ for $i \neq N$, and $p_N(0) = 1$
(B)	$\frac{dp_{i}(t)}{dt} = 5(i+1)p_{i+1}(t) - 5ip_{i}(t) \text{and} \frac{dp_{N}(t)}{dt} = -5Np_{N}(t)$
	for $i = 0, 1, 2,, N - 1$ with initial conditions $p_i(0) = 0$ for $i \neq N$, and $p_N(0) = 1$
(C)	$\frac{dp_{i}(t)}{dt} = 5(i+1)p_{i+1}(t) + 5ip_{i}(t) \qquad \text{and} \qquad \frac{dp_{N}(t)}{dt} = 5Np_{N}(t)$
	for $i = 0, 1, 2,, N - 1$ with initial conditions $p_i(0) = 1$ for $i \neq N$, and $p_N(0) = 0$
(D)	$\frac{dp_{i}(t)}{dt} = 5(i+1)p_{i+1}(t) - 5ip_{i}(t) \text{and} \frac{dp_{N}(t)}{dt} = -5Np_{N}(t)$ for $i = 0, 1, 2,, N - 1$ with initial conditions $p_{i}(0) = 1$ for $i \neq N$, and $p_{N}(0) = 0$
	for $i = 0, 1, 2,, N - 1$ with initial conditions $p_i(0) = 1$ for $i \neq N$, and $p_N(0) = 0$
	St


Q.13	Let S^2 be the variance of a random sample of size $n > 1$ from a normal population with an unknown mean μ and an unknown finite variance $\sigma^2 > 0$. Consider the following statements:
	(I) S^2 is an unbiased estimator of σ^2 , and S is an unbiased estimator of σ .
	(I) $(\frac{n-1}{n}) S^2$ is a maximum likelihood estimator of σ^2 , and $\sqrt{\frac{n-1}{n}}S$ is a
	11 11
	maximum likelihood estimator of σ .
	Which of the above statements is/are true?
(A)	(I) only
(B)	(II) only
(C)	Both (I) and (II)
(D)	Neither (I) nor (II)
	Both (I) and (II) Neither (I) nor (II) SET THE TEXANIN SET THE TEXANING

GATE 2	2022 Statistics (ST)
Q.14	Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function defined by
	$f(x, y) = \{ \begin{array}{l} \frac{x^2 y}{x^2 + y^2}, & (x, y) \neq (0, 0), \\ 0, & (x, y) = (0, 0). \end{array} \right.$
	Then which one of the following statements is true?
(A)	f is bounded and $\frac{6f}{6x}$ is unbounded on \mathbb{R}^2
(B)	f is unbounded and $\frac{6f}{6x}$ is bounded on \mathbb{R}^2
(C)	Both f and $\frac{6f}{6x}$ are unbounded on \mathbb{R}^2
(D)	Both f and $\frac{6f}{6x}$ are bounded on \mathbb{R}^2
	Both f and $\frac{6f}{6x}$ are bounded on \mathbb{R}^2 Both f and $\frac{6f}{6x}$ are bounded on \mathbb{R}^2

Q.15	 Let X₁, X₂,, X_n be a random sample from a distribution with cumulative distribution function F(x). Let the empirical distribution function of the sample be F_n(x). The classical Kolmogorov-Smirnov goodness of fit test statistic is given by T_n = √n D_n = √n sup_{-∞<x<∞< sub=""> F_n(x) - F(x) .</x<∞<>} Consider the following statements: The distribution of T_n is the same for all continuous underlying distribution functions F(x). D_n converges to 0 almost surely, as n → ∞.
(A)	(I) only
(B)	(II) only
(C)	Both (I) and (II)
(D)	(I) only (II) only Both (I) and (II) Neither (I) nor (II) GET
	SEL

Q.16	Consider the following transition matrices P_1 and P_2 of two Markov chains:
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Then which one of the following statements is true?
(A)	Both P_1 and P_2 have unique stationary distributions
(B)	P_1 has a unique stationary distribution, but P_2 has infinitely many stationary distributions
(C)	P_1 has infinitely many stationary distributions, but P_2 has a unique stationary distribution
(D)	Neither P_1 nor P_2 has unique stationary distribution
	SETNETEXAN


GAIL 2	022 Statistics (ST)
Q.17	Let $X_1, X_2,, X_{20}$ be a random sample of size 20 from $N_6(\mu, \Sigma)$, with det $(\Sigma) \neq 0$, and suppose both μ and Σ are unknown. Let $\overline{X} = \frac{1}{20} \sum_{i=1}^{20} X_{i}$ and $S = \frac{1}{19} \sum_{i=1}^{20} (X_i - \overline{X}) (X_i - \overline{X})^T$. Consider the following two statements: (I) The distribution of 19 S is $W_6(19, \Sigma)$ (Wishart distribution of order 6 with 19 degrees of freedom). (II) The distribution of $(X_3 - \mu)^T S^{-1}(X_3 - \mu)$ is χ_6^2 (Chi-square distribution with 6 degrees of freedom). Then which of the above statements is/are true?
(A)	(I) only
(B)	(II) only
(C)	Both (I) and (II)
(D)	(I) only (II) only Both (I) and (II) Neither (I) nor (II) SET THE LANN.

Q.19	Let $X_1, X_2,, X_n$ be a random sample from a population $f(x; \theta)$, where θ is a parameter. Then which one of the following statements is NOT true?
(A)	$\sum_{i=1}^{n} X_{i} \text{ is a complete and sufficient statistic for } \theta, \text{ if}$ $f(x; \theta) = \frac{e^{-\theta} \theta^{x}}{x!}, x = 0, 1, 2,, \text{ and } \theta > 0$
(B)	$(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}) \text{ is a complete and sufficient statistic for } \theta, \text{ if}$ $f(x; \theta) = \frac{1}{\sqrt{2\pi \theta}} e^{-\frac{1}{2\theta^{2}}(x-\theta)^{2}}, -\infty < x < \infty, \ \theta > 0$
(C)	$f(x; \theta) = \theta x^{\theta-1}, 0 < x < 1, \theta > 0$ has monotone likelihood ratio property in $\prod_{i=1}^{n} X_i$
(D)	$X_{(n)} - X_{(1)} \text{ is ancillary statistic for } \theta \text{ if } f(x; \theta) = 1, \ 0 < \theta < x < \theta + 1, \text{ where}$ $X_{(1)} = \min\{X_1, X_2, \dots, X_n\} \text{ and } X_{(n)} = \max\{X_1, X_2, \dots, X_n\}$

Q.20	A random sample $X_1, X_2,, X_6$ of size 6 is taken from a Bernoulli distribution with the parameter θ . The null hypothesis $H_0 \theta = \frac{1}{2}$ is to be tested against the alternative hypothesis $H_1: \theta > \frac{1}{2}$, based on the statistic $Y = \sum_{i=1}^{6} X_i$. If the value of Y corresponding to the observed sample values is 4, then the <i>p</i> -value of the test statistic is
(A)	$\frac{21}{32}$
(B)	$\frac{9}{64}$
(C)	$\frac{11}{32}$
(D)	$\frac{7}{64}$ $+$ A^{M}
	11/32 7/64 64 64

Q.21	Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers satisfying
	$\frac{8}{a_{n+1}} = \frac{7}{a_n} + \frac{a_n^2}{343} , \qquad n \ge 1$
	a_{n+1} a_n 343
	with $a_1 = 3$ and $a_n < 7$ for all $n \ge 2$.
	Consider the following statements:
	(I) $\{a_n\}$ is monotonically increasing. (II) $\{a_n\}$ converges to a value in the interval [3, 7].
	Then which of the above statements is/are true?
(A)	(I) only
(B)	(I) only (II) only Both (I) and (II) Neither (I) nor (II) Contained Cont
(C)	Both (I) and (II)
(D)	Neither (I) nor (II)
	SET
Q.22	Let M be any square matrix of arbitrary order n such that $M^2 = 0$ and the nullity of M is 6. Then the maximum possible value of n (in integer) is

GAIL 2	2022 Statistics (ST)
Q.27	Let X_i , $i = 1, 2,, n$, be <i>i</i> . <i>i</i> . <i>d</i> . random variables from a normal distribution with mean 1 and variance 4. Let $S_n = X_1^2 + X_2^2 + \dots + X_n^2$. If $Var(S)_n$ denotes the variance of S_n , then the value of
	$\lim_{n \to \infty} \left(\frac{Var(S_{\underline{n}})}{n} - \left(\frac{E(S_{\underline{n}})}{n} \right)^2 \right)$
	(in integer) is equal to
	- Ch
Q.28	At a telephone exchange, telephone calls arrive independently at an average rate of 1 call per minute, and the number of telephone calls follows a Poisson distribution. Five time intervals, each of duration 2 minutes, are chosen at random. Let p denote the probability that in each of the five time intervals at most 1 call arrives at the telephone exchange. Then $e^{10}p$ (in integer) is equal to
	SET
Q.29	Let X be a random variable with the probability density function
	$c(x - [x]), \qquad 0 < x < 3,$ $f(x) = \{$ $0, \qquad \text{elsewhere,}$
	where <i>c</i> is a constant and [<i>x</i>] denotes the greatest integer less than or equal to <i>x</i> . If $A = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$, then $P(X \in A)$ (rounded off to two decimal places) is equal to

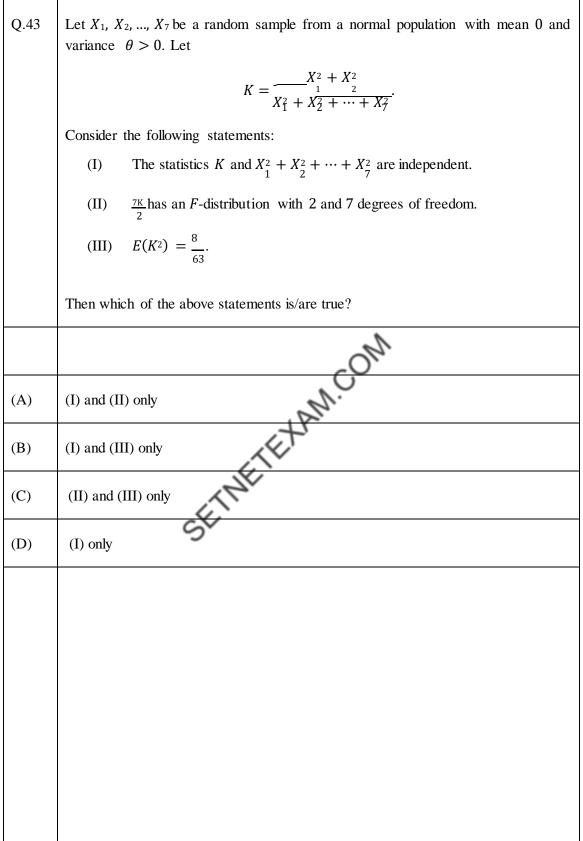
JATEZ	2022 Statistics (ST)
Q.30	Let X and Y be two random variables such that the moment generating function of X is $M(t)$ and the moment generating function of Y is $H(t) = (\frac{3}{4}e^{2t} + \frac{1}{4}M(t),$
	where $t \in (-h, h)$, $h > 0$. If the mean and the variance of X are $\frac{1}{2}$ and $\frac{1}{4}$,
	respectively, then the variance of Y (in integer) is equal to
Q.31	Let $X_{i, i} = 1, 2,, n$, be <i>i.i.d.</i> random variables with the probability density function $\frac{1}{x^{-5/6}} e^{-x/8}, 0 < x < \infty,$
	Tunction $f_{K}(x) = \{ \begin{array}{c} \frac{1}{\sqrt{2} \Gamma_{6}^{-1}} & x^{-5/6} \ e^{-x/8}, & 0 < x < \infty, \\ f_{K}(x) = \{ \begin{array}{c} \frac{1}{\sqrt{2} \Gamma_{6}^{-1}} & x^{-5/6} \ e^{-x/8}, & 0 < x < \infty, \\ 0, & \text{elsewhere,} \end{array} \right.$ where $\Gamma(\cdot)$ denotes the gamma function. Also, let $\bar{X}_{n} = \frac{1}{n} (X_{1} + X_{2} + \dots + X_{n})$. If $\sqrt{n} (\bar{X} (3 - \bar{X}) - \frac{20}{9})$ converges to N(0, σ^{2}) in distribution, then σ^{2} (rounded in the second se
	$\sqrt{n} \left(\overline{X} \left(3 - \overline{X} \right) \right)^{-20}$ converges to N(0, σ^2) in distribution, then σ^2 (rounded off to two decimal places) is equal to
Q.32	Consider a Poisson process $\{X(t), t \ge 0\}$. The probability mass function of $X(t)$ is given by
	$f(t) = \frac{e^{-4t} (4t)^n}{n!}$, $n = 0, 1, 2,$
	If $C(t_1, t_2)$ is the covariance function of the Poisson process, then the value of $C(5, 3)$ (in integer) is equal to
	<u> </u>

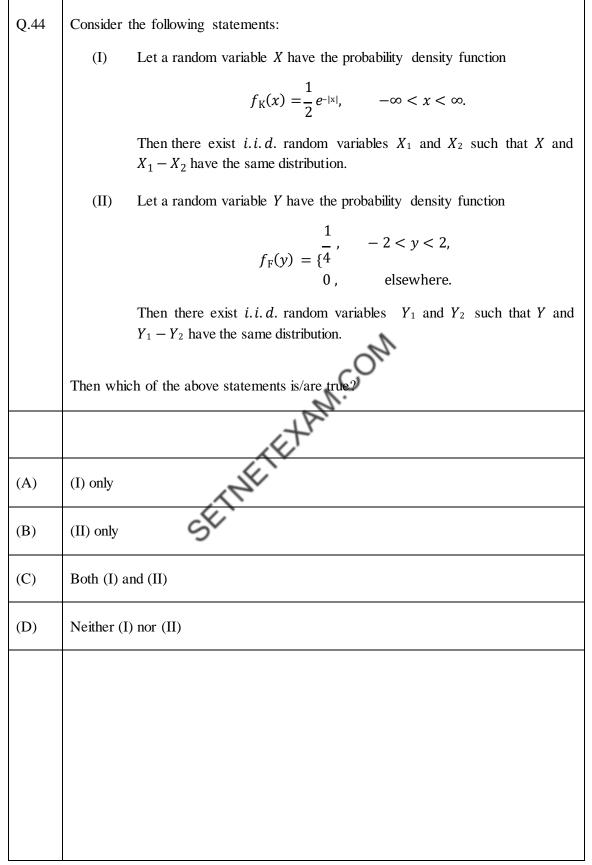
Q.33	A random sample of size 4 is taken from the distribution with the probability density function
	$f(x;\theta) = \{ \frac{2(\theta - x)}{\theta^2}, 0 < x < \theta, \\ 0, \text{elsewhere.} \}$
	If the observed sample values are 6, 5, 3, 6, then the method of moments estimate (in integer) of the parameter θ , based on these observations, is
Q.34	A company sometimes stops payments of quarterly dividends. If the company pays the quarterly dividend, the probability that the next one will be paid is 0.7. If the company stops the quarterly dividend, the probability that the next quarterly dividend will not be paid is 0.5. Then the probability (rounded off to three decimal places) that the company will not pay quarterly dividend in the long run is
	SETINE
Q.35	Let $X_1, X_2,, X_8$ be a random sample taken from a distribution with the probability density function
	$f_{\rm K}(x) = \begin{cases} \frac{x}{-}, & 0 < x < 4, \\ f_{\rm K}(x) = \begin{cases} 8 & 0, \\ 0, & \text{elsewhere.} \end{cases}$
	Let $F_8(x)$ be the empirical distribution function of the sample. If α is the variance of $F_8(2)$, then 128α (in integer) is equal to

Q.36 - Q.65 Carry TWO marks Each

Q.36	Let M be a 3 \times 3 real symmetric matrix with eigenvalues -1 , 1, 2 and the corresponding unit eigenvectors u , v , w , respectively. Let x and y be two vectors in \mathbb{R}^3 such that
	$Mx = u + 2(v + w)$ and $M^2y = u - (v + 2w)$.
	Considering the usual inner product in \mathbb{R}^3 , the value of $ x + y ^2$, where $ x + y $ is the length of the vector $x + y$, is
(A)	1.25
(B)	0.25 COM
(C)	0.75 AM
(D)	
	1.25 0.25 0.75 1 SETMETERAMICON 1 SETMETERA

Q.37	Consider the following infinite series:
	$S_{1} := \sum_{n=0}^{\infty} (-1)^{n} \frac{n}{n^{2} + 4} \text{and} S_{2} := \sum_{n=0}^{\infty} (-1)^{n} (\sqrt{n^{2} + 1} - n).$
	Which of the above series is/are conditionally convergent?
(A)	S_1 only
(B)	S ₂ only
(C)	Both S_1 and S_2
(D)	Neither S_1 nor S_2
	1 PM.
Q.38	Let $(3, 6)^{T}$, $(4, 4)^{T}$, $(5, 7)^{T}$ and $(4, 7)^{T}$ be four independent observations from a bivariate normal distribution with the mean vector $\boldsymbol{\mu}$ and the covariance matrix $\boldsymbol{\Sigma}$. Let $\boldsymbol{\hat{\mu}}$ and $\boldsymbol{\hat{\Sigma}}$ be the maximum likelihood estimates of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, respectively, based on these observations. Then $\boldsymbol{\hat{\Sigma}}\boldsymbol{\hat{\mu}}$ is equal to
(A)	(^{3.5} ₁₀)
(B)	(^{7.5} ₄)
(C)	(⁴ _{13.5})
(D)	(¹⁰ _{3.5})


Q.39	$X_{1} \qquad 2 \qquad 4 -1 1$ Let $X = (X_{2})$ follow $N_{3}(\mu, \Sigma)$ with $\mu = (-3)$ and $\Sigma = [-1 2 a]$, where X_{3} $a \in \mathbb{R}$. Suppose that the partial correlation coefficient between X_{2} and X_{3} , keeping X_{1} fixed, is $\frac{5}{7}$. Then a is equal to
(A)	1
(B)	$\frac{3}{2}$
(C)	2 CONT
(D)	$\frac{1}{2}$ Etam.
	2 2 1 2 5 5 5 5 1 1 5 5 1 1 1 2 5 5 1 1 1 2 5 5 1 1 1 2 5 5 1 1 1 1


Q.40	If the line $y = \alpha x, \alpha \ge \sqrt{2}$, divides the area of the region
	$R := \{ (x, y) \in \mathbb{R}^2 \ 0 \le x \le \sqrt{y}, 0 \le y \le 2 \}$
	into two equal parts, then the value of α is equal to
	_
(A)	$\frac{3}{\sqrt{2}}$
(B)	$2\sqrt{2}$
(C)	$\sqrt{2}$
(D)	$\frac{5}{2\sqrt{2}}$
	√2 <u>5</u> 2√2 SEINETEXAN

Q.41	Let (X, Y, Z) be a random vector with the joint probability density function						
	$f_{K,F,Z}(x, y, z) = \begin{cases} 3 \\ 0, \end{cases} \qquad 0 < x < 1, 0 < y < 1, 0 < z < $						
	Then which one of the following points is on the regression surface of X on (Y, Z) ?						
(A)	$(\frac{4}{7},\frac{1}{3},\frac{1}{3},\frac{1}{3})$						
(B)	$\begin{pmatrix} 6 & 2 & 2 \\ (-7 & 3, 3 &) \end{pmatrix}$						
(C)	$(\frac{1}{2},\frac{1}{3},\frac{2}{3})$						
(D)	$(\frac{1}{2}, \frac{2}{3}, \frac{1}{3})$						
	$(\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{3})$ $(\frac{1}{2}, \frac{2}{3}, \frac{1}{3}, \frac{1}{3})$ $(\frac{1}{2}, \frac{2}{3}, \frac{1}{3}, \frac{1}{3})$ $(\frac{1}{2}, \frac{2}{3}, \frac{1}{3}, \frac{1}{3})$ $(\frac{1}{2}, \frac{2}{3}, \frac{1}{3}, \frac{1}{3})$						

Q.42	A random sample X of size one is taken from a distribution with the probability density function
	$f(x; \theta) = \{\frac{2x}{\theta^2}, \qquad 0 < x < \theta,$
	0, elsewhere.
	If $\frac{\kappa}{\theta}$ is used as a pivot for obtaining the confidence interval for θ , then which one of
	the following is an 80% confidence interval (confidence limits rounded off to three decimal places) for θ based on the observed sample value $x = 10$?
(A)	(10.541, 31.623)
(B)	(10.987, 31.126)
(C)	(11.345, 30.524)
(D)	(11.267, 30.542)
	(10.987, 31.126) (11.345, 30.524) (11.267, 30.542) (11.267, 10.542)

GATE 2022 Statistics

Q.45	Suppose $X_1, X_2,, X_n,$ are independent exponential random variables with the mean $\frac{1}{2}$. Let the notation <i>i. o.</i> denote 'infinitely often'. Then which of the following is/are true?
(A)	$P(\{X_n > \frac{c}{2}\log_e n\} \ i.o.) = 1 \text{ for } 0 < \epsilon \le 1$
(B)	$P(\{X_n < \frac{c}{2} \log_e n\} \ i.o.) = 1 \text{ for } 0 < \epsilon \le 1$
(C)	$P(\{X_n > \frac{c}{2}\log_e n\} \ i. o.) = 1 \text{ for } \epsilon > 1$
(D)	$P\left(\{X_n < \frac{c}{2}\log_e n\} \ i. \ o.\right) = 1 \text{ for } \epsilon > 1$
	$P\left(\left\{X_{n} < \frac{c}{2}\log_{e}n\right\} i. o.\right) = 1 \text{ for } \epsilon > 1$

	022 Statistics (ST)
Q.46	Let $\{X_n\}, n \ge 1$, be a sequence of random variables with the probability mass functions $p_{K_n}(x) = \begin{cases} \frac{n}{n+1}, & x = 0, \\ 1, & x = n, \\ \frac{n}{n+1}, & x = n, \\ 0, & \text{elsewhere.} \end{cases}$ Let <i>X</i> be a random variable with $P(X = 0) = 1$. Then which of the following statements is/are true?
(A)	$X_{\rm n}$ converges to X in distribution
(B)	$X_{\rm n}$ converges to X in probability
(C)	$E(X_n) \longrightarrow E(X)$
(D)	There exists a subsequence $\{X_{n_k}\}$ of $\{X_n\}$ such that X_{n_k} converges to X almost surely
	SET

Q.47	Let M be any 3×3 symmetric matrix with eigenvalues 1, 2 and 3. Let N be any 3×3 matrix with real eigenvalues such that $MN + N^{T}M = 3I$, where I is the 3×3 identity matrix. Then which of the following cannot be eigenvalue(s) of the matrix N ?
(A)	$\frac{1}{4}$
(B)	$\frac{3}{4}$
(C)	$\frac{1}{2}$
(D)	$\frac{7}{4}$
	M.C.
Q.38	Let M be a 3 × 2 real matrix having a singular value decomposition as $M = USV^{T}$, where the matrix $S = \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^{T}$, U is a 3 × 3 orthogonal matrix, and V is a 2 × 2 orthogonal matrix. Then which of the following statements is/are true?
	5
(A)	The rank of the matrix \boldsymbol{M} is 1
(B)	The trace of the matrix $\mathbf{M}^{T}\mathbf{M}$ is 4
(C)	The largest singular value of the matrix $(\mathbf{M}^{T}\mathbf{M})^{-1}\mathbf{M}^{T}$ is 1
(D)	The nullity of the matrix M is 1

	022 Statistics (ST)
Q.49	Let X be a random variable such that
	$P\left(\frac{a}{2\pi}\in \mathbb{Z}\right) = 1, a > 0,$
	where \mathbb{Z} denotes the set of all integers. If $\phi_{\mathrm{K}}(t), t \in \mathbb{R}$, denotes the characteristic function of <i>X</i> , then which of the following is/are true?
(A)	$\phi_{\rm K}(a)=1$
(B)	$\phi_{\rm K}(\cdot)$ is periodic with period a
(C)	$ \phi_{K}(t) < 1$ for all $t \neq a$
(D)	$\int_{0}^{2\pi} e^{-itn} \phi_{K}(t) dt = \pi P \left(X = \frac{2\pi n}{a} \right), n \in \mathbb{Z}, i = \sqrt{-1}$
	ctan.
Q.50	Which of the following real valued functions is/are uniformly continuous on $[0, \infty)$?
	St
(A)	$\sin^2 x$
(B)	$x \sin x$
(C)	sin(sin x)
(D)	$\sin(x \sin x)$

Q.51	Two independent random samples, each of size 7, from two populations yield the following values:								
	Population 1	18	20	16	20	17	18	14	
	Population 2	17	18	14	20	14	13	16	
	If Mann-Whitney U test is performed at 5% level of significance to test the null hypothesis H_0 : Distributions of the populations are same, against the alternative hypothesis H_1 : Distributions of the populations are not same, then the value of the test statistic U (in integer) for the given data, is								
Q.52	Consider the multiple regression model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon,$								
	where ϵ is no β_0 , β_1 , β_2 , β_3 a yield sum of squ Then, for testing hypothesis H_1 : β off to three dec	re unknown ares due the null $B_i \neq 0$ for	wn parame to regres typothesis or some <i>i</i>	eters. Sup sion as 18 s H_0 : β_1 = = 1, 2, 3	pose 52 c 8.6 and t = $\beta_2 = \beta_3$, the value	bservation total sum $\beta_3 = 0$ at ue of the t	ns of (Y, of square against the est statisti	X ₁ , X ₂ , X ₃ s as 79.23 alternativ	

Q.53	Suppose a random sample of size 3 is taken from a distribution with the probability density function
	$f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{elsewhere.} \end{cases}$
	If p is the probability that the largest sample observation is at least twice the smallest sample observation, then the value of p (rounded off to three decimal places) is
Q.54	Let a linear model $Y = \beta_0 + \beta_1 X + \epsilon$ be fitted to the following data, where ϵ is normally distributed with mean 0 and unknown variance $\sigma^2 > 0$. $x_i 0 1 2 3 4$
	y _i 3 4 5 6 7
	Let \dot{Y}_0 denote the ordinary least-square estimator of Y at $X = 6$, and the variance of of $\dot{Y}_0 = c\sigma^2$. Then the value of the real constant c (rounded off to one decimal place) is equal to
Q.55	Let 0, 1, 1, 2, 0 be five observations of a random variable X which follows a Poisson distribution with the parameter $\theta > 0$. Let the minimum variance unbiased estimate of $P(X \le 1)$, based on this data, be α . Then 5 ⁴ α (in integer) is equal to

Q.56	While calculating Spearman's rank correlation coefficient, based on <i>n</i> observations $\{(x_i, y_i), i = 1, 2,, n\}$ from a paired data, it is found that x_i are distinct for all $i \ge 2$, $x_1 = x_2$, and $\sum_{i=1}^{n} d_i^2 = 19.5$, where $d_i = \operatorname{rank}(x_i) - \operatorname{rank}(y_i)$. Then the minimum possible value of $n^3 - n$ (in integer) is
Q.57	In a laboratory experiment, the behavior of cats are studied for a particular food preference between two foods A and B. For an experiment, 70% of the cats that had food A will prefer food A, and 50% of the cats that had food B will prefer food A. The experiment is repeated under identical conditions. If 40% of the cats had food A in the first experiment, then the percentage (rounded off to one decimal place) of cats those will prefer food A in the third experiment, is
	ctAM.COM.
Q.58	A random sample of size 5 is taken from a distribution with the probability density function $f(x; \theta) = \{ \frac{3x^2}{\theta^3}, 0 < x < \theta, \\ 0, \text{elsewhere,} \\ \text{where } \theta \text{ is an unknown parameter. If the observed values of the random sample are} $
	3, 6, 4, 7, 5, then the maximum likelihood estimate of the $\frac{1}{8}$ th quantile of the distribution (rounded off to one decimal place) is

Q.59	Consider a gamma distribution with the probability density function
	$f(x; \beta) = \{ \frac{1}{24 \beta^5} x^4 e^{-x/\beta}, \qquad x > 0, \\ 0, \qquad \text{elsewhere,} \}$
	0, elsewhere,
	with $\beta > 0$. Then, for $\beta = 2$, the value of the Cramer-Rao lower bound (rounded off to one decimal place) for the variance of any unbiased estimator of β^2 , based on a random sample of size 8 from this distribution, is
Q.60	Let X_1 , X_2 , X_3 , X_4 be a random sample of size four from a Bernoulli distribution with the parameter θ , $0 < \theta < 1$. Consider the null hypothesis $H_0 \theta = \frac{1}{4}$ against the alternative hypothesis $H_1: \theta > \frac{1}{4}$. Suppose H_0 is rejected if and only if $X_1 + X_2 + X_3 + X_4 > 2$. If α is the probability of Type I error for the test and $\gamma(\theta)$ is the power function of the test, then the value of $16\alpha + 7\gamma(2)$ (in integer) is equal to
	GETNETE
	SF
Q.61	Given that $\Phi(1.645) = 0.95$ and $\Phi(2.33) = 0.99$, where $\Phi(\cdot)$ denotes the cumulative distribution function of a standard normal random variable. For a random sample $X_1, X_2,, X_n$ from a normal population $N(\mu, 2^2)$, where μ is unknown, the null hypothesis $H_0: \mu = 10$ is to be tested against the alternative hypothesis $H_1: \mu = 12$. Suppose that a test that rejects H_0 if the sample mean \overline{X} is large, is used. Then the smallest value of n (in integer) such that Type I error is 0.05 and Type II error is at most 0.01, is

GATE 2022 Statistics (ST)

Q.62	Let $Y_1 < Y_2 < \cdots < Y_n$ be the order statistics of a random sample of size <i>n</i> from a continuous distribution, which is symmetric about its mean μ . Then the smallest value of <i>n</i> (in integer) such that $P(Y_1 < \mu < Y_n) \ge 0.99$, is
Q.63	If $P(x, y, z)$ is a point which is nearest to the origin and lies on the intersection of the surfaces $z = xy + 5$ and $x + y + z = 1$. Then the distance (in integer) between the origin and the point P is
	2
Q.64	Let X and Y be random variables such that X is uniformly distributed over $(0, 4)$, and the conditional distribution of Y given $X = x$ is uniformly distributed over $(0, \frac{x^2}{4})$. Then $E(Y^2)$ (rounded off to three decimal places) is equal to
	SETIME
Q.65	Let $\boldsymbol{X} = (X_1, X_2, X_3)^{\mathrm{T}}$ be a random vector with the distribution $N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu} = \begin{pmatrix} 3 \\ (2) \\ 4 \end{pmatrix}$ and $\boldsymbol{\Sigma} = \begin{bmatrix} 4 & 2 & 1 \\ 2 & 3 & 0 \end{bmatrix}$. $1 & 0 & 2 \end{pmatrix}$
	Then $E(X_1 (X_2 = 4, X_3 = 7))$ (in integer) is equal to

Q. No.	Session	Session Question Type		Key/Range	Mark
1	3	MCQ	GA	С	1
2	3	MCQ	GA	D	1
3	3	MCQ	GA	В	1
4	3	MCQ	GA	В	1
5	3	MCQ	GA	С	1
6	3	MCQ	GA	D	2
7	3	MCQ	GA	С	2
8	3	MCQ	GA	С	2
9	3	MCQ	GA	В	2
10	3	MCQ	GA	В	2
11	3	MCQ	ST	D	1
12	3	MCQ	ST	В	1
13	3	MCQ	ST	В	1
14	3	MCQ	ST	В	1
15	3	MCQ	ST	С	1
16	3	MCQ	ST	С	1
17	3	MCQ	ST	A	1
18	3	MCQ	ST	A	1
19	3	MCQ	ST C	В	1
20	3	MCQ	SIN	С	1
21	3	MCQ	st	С	1
22	3	NAT 📈	\$T	12 to 12	1
23	3	NAT	ST	0.25 to 0.25	1
24	3	NAT	ST	22 to 22	1
25	3	NAT	ST	0.55 to 0.59	1
26	3	ONAT	ST	2.30 to 2.32	1
27	3	NAT	ST	23 to 23	1
28	3	NAT	ST	243 to 243	1
29	3	NAT	ST	0.57 to 0.59	1
30	3	NAT	ST	1 to 1	1
31	3	NAT	ST	1.18 to 1.19	1
32	3	NAT	ST	12 to 12	1
33	3	NAT	ST	15 to 15	1
34	3	NAT	ST	0.375 to 0.375	1
35	3	NAT	ST	3 to 3	1
36	3	MCQ	ST	А	2
37	3	MCQ	ST	С	2
38	3	MCQ	ST	Α	2
39	3	MCQ	ST	A	2
40	3	MCQ	ST	A	2
41	3	MCQ	ST	A	2
42	3	MCQ	ST	А	2
43	3	MCQ	ST	В	2
44	3	MCQ	ST	А	2

		-		_	[
	45	3	MSQ	ST	A, B, D	2	
	46	3	MSQ	ST	A, B, D	2	
	47	3	MSQ	ST	A, D	2	
	48	3	MSQ	ST	В, С	2	
	49	3	MSQ	ST	А, В	2	
	50	3	MSQ	ST	А, С	2	
	51	3	NAT	ST	15 to 15	2	
	52	3	NAT	ST	4.907 to 4.909	2	
	53	3	NAT	ST	0.436 to 0.439	2	
	54	3	NAT	ST	1.8 to 1.8	2	
	55	3	NAT	ST	512 to 512	2	
	56	3	NAT	ST	60 to 60	2	
	57	3	NAT	ST	61.5 to 61.7	2	
	58	3	NAT	ST	3.5 to 3.5	2	
	59	3	NAT	ST	1.6 to 1.6	2	
	60	3	NAT	ST	3 to 3	2	
	61	3	NAT	ST	16 to 16	2	
	62	3	NAT	ST	8 to 8	2	
	63	3	NAT	ST	3 to 3	2	
	64	3	NAT	ST	1.065 to 1.069	2	
	65	3	NAT	ST	-6 to 6	2	

			Str				