21724

The eigen values of the matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ are: A) (1,6) B) (5,6) 1. C) D) (2, 6)(5, 1)

120 MINUTES

2. Which one of the following is the Rodrigue's formula $H_n(x) = e^{x^2} (-1)^n \frac{d^n}{dx^n} (e^{-x^2})$ ۸)

A)
$$H_n(x) = e^x (-1)^n \frac{1}{dx^n} (e^{-x})^n$$

B)
$$H_n(x) = e^{2x^2} (-1)^n \frac{d^n}{dx^n} (e^{x^2})$$

C)
$$H_n(x) = e^{x^2} (-1)^n \frac{d^n}{dx^n} (e^{x^2})$$

D)
$$H_n(x) = e^{-x^2} (-1)^n \frac{d^n}{dx^n} (e^{2x^2})$$

 $J_{1/2}(x)$ can be written as: 3.

A)
$$\sqrt{\frac{2}{\pi x}} \cos x$$
 B) $\sqrt{\frac{2}{\pi x}} 2\sin x$ C) $\sqrt{\frac{2}{\pi x}} \sin x$ D) $\sqrt{\frac{2}{\pi x}} 2\cos x$

5. Lagrangian for compound pendulum is:
A)
$$\frac{1}{2}I\dot{\theta}^2 + mglcos\theta$$
 B) $\frac{1}{2}I\dot{\theta}^2 + mglsin\theta$
C) $\frac{1}{2}I\theta + mglcos\theta$ D) $\frac{1}{2}I\dot{\theta}^2 + m^2glcos\theta$

Find the velocity at which the mass of a particle is double its rest mass: 6. $\frac{\sqrt{3C}}{2}$ B) $\frac{\sqrt{3}C}{2}$ C) $\frac{\sqrt{7C}}{2}$ $\frac{\sqrt{7}C}{2}$ D) A)

7. What is the momentum of an electron of mass (m), which has the same kinetic energy as its rest mass energy.

A)
$$\sqrt{3mc}$$
 B) $\sqrt{\frac{3mc}{2}}$ C) $\frac{mc}{\sqrt{3}}$ D) $\sqrt{3}mc$

8. The Jacobi's form of least action principle is:

The Jacobi's form of least action principle is:
A)
$$\Delta \int_{t_1}^{t_2} \sqrt{H - V(q)} \, d\rho = 0$$
 B) $\Delta \int_{t_1}^{t_2} \sqrt{H + V(q)} \, d\rho = 0$
C) $\Delta \int_{t_1}^{t_2} \sqrt{H + V^2(q)} \, d\rho = 0$ D) $\Delta \int_{t_1}^{t_2} \sqrt{H - V^2(q)} \, d\rho = 0$

9.	Write the Hamiltonian of a charged particle in an em field A) $H = \frac{1}{2m}(\bar{p} + q\bar{A})^2 + q\phi$ B) $H = \frac{1}{2}(\bar{p} - q\bar{A})^2 + q\phi$	
	C) $H = \frac{1}{2m}(\bar{p} - q\bar{A})^2 + q\emptyset$ D) $H = \frac{1}{2m}(\bar{p} - q\bar{A})^2 + qp\emptyset$	
10.	What is the de-Broglie wavelength of a particle of KE, E? A) $\lambda = \frac{h}{\sqrt{2m}}$ B) $\lambda = \frac{h}{\sqrt{2E}}$ C) $\lambda = \frac{h}{\sqrt{3mE}}$ D) $\lambda = \frac{h}{\sqrt{2mE}}$	
11.	The probability current density is given by the equation: A) $\frac{i\hbar}{2m} [\varphi \nabla \varphi^* - \varphi^* \nabla \varphi]$ B) $\frac{i\hbar}{4m} [\varphi \nabla \varphi^* + \varphi^* \nabla \varphi]$ C) $\frac{i\hbar}{2m} [\varphi^2 \nabla \varphi^* - \varphi^* \nabla \varphi]$ D) $\frac{i\hbar}{2} [\varphi \nabla \varphi^* - \varphi^* \nabla \varphi]$	
12.	The wave function of the ground state of hydrogen has the form A) $\varphi = \frac{1}{\sqrt{\pi a^3}} e^{r/a}$ B) $\varphi = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}$	
	C) $\varphi = \frac{1}{\sqrt{\pi a^2}} e^{-r/a}$ D) $\varphi = \frac{1}{\sqrt{\pi a}} e^{-r/a}$	
13.	The value of $[L^2, L_x]$ is given by: A) L^2 B) 0 C) L_z D) ih	
14.	The energy eigen values of hydrogen atom are proportional to: A) n^3 B) n C) $\frac{-1}{n^2}$ D) $\frac{1}{n^2}$	
15.	The maximum number of electrons in a subshell with orbital quantum number l is: A) $(2l+1)$ B) $(2l-1)$ C) $2(2l+1)$ D) $2(2l-1)$	
16.	The energy of the lowest state in a one dimensional potential box of length a is: $2h^2$	
	A) Zero B) $\frac{2h^2}{8m^2}$ C) $\frac{h^2}{8ma^2}$ D) $\frac{h}{8ma^2}$	
17.	The electric field due to an infinitely long charged cylinder at an Internal point r < R is A) $E = \frac{\lambda}{4\pi\epsilon_0 R^2}$ B) $E = \frac{\lambda}{4\pi\epsilon_0 R}$:
	C) $E = \frac{q^2}{4\pi\epsilon_0 R^2}$ D) $E = \frac{\lambda r}{4\pi\epsilon_0 R^2}$	
18.	The displacement current arises due to :A)Electrons & HolesB)Time varying electric filedC)ElectronsD)Holes	
19.	Which one of the following Maxwell's equation implies the absence of magnetic monopoles?	
	A) $\nabla . \overline{E} = \frac{\rho}{\epsilon_0}$ B) $\nabla . \overline{B} = 0$ C) $\nabla \times \overline{E} = \frac{-\partial B}{\partial T}$ D) $\nabla . \overline{E} = \frac{\rho}{\epsilon_0}$	
20.	The direction of propagation of electromagnetic wave is given by: A) $\overline{E} \times \overline{B}$ B) $\overline{E} \cdot \overline{B} \cos\theta$ C) $\overline{E} \cdot \overline{A}$ D) \overline{B}	

21.	The m	ultiplicity and	S value of t	the state 2D	$_{3/2}$ is g	iven by:		
		$(2, \frac{3}{2})$					D)	(1, 2)
22.		r beam of wave ence length ?	-				c. Wha	t is its
	A)	13 km	B) 12	2 km	C)	10 km	D)	11.36 km
23.	A)	n of the followin (1H ³ , 2He ³) (6C ¹³ , 7N ¹³)		•		elei? , 4Be ⁷) e above		
24.	Nuclea A)	ar fission energ 8.5MeV		con of U ^{23!} 085MeV		e is nearly: 85MeV	D)	0.85MeV
25.	The h A) B) C) D)	yper charge 'Y Baryon and n Baryon and m Baryon and st Baryon and st	eutrino nun 1eson numb trangeness 1	nber ber number	of the:			
26.	The co A)	o-ordination nu 12	mber of fac B) 8	ce centered	cubic st C)	ructure is: 9	D)	6
27.	Transi	tion temperatu						related as:
	A)	$\mathbf{H}_{\mathbf{C}} = \mathbf{H}_{0} \Big[1 - \mathbf{H}_{0} \Big] \Big] \mathbf{H}_{\mathbf{C}} = \mathbf{H}_{0} \Big[1 - \mathbf{H}_{0} \Big] \mathbf{H}_{0} \Big] \mathbf{H}_{0} = \mathbf{H}_{0} \Big[1 - \mathbf{H}_{0} \Big] \mathbf{H}_{0} \Big] \mathbf{H}_{0} = \mathbf{H}_{0} \Big[1 - \mathbf{H}_{0} \Big] \mathbf{H}_{0} \Big] \mathbf{H}_{0} = \mathbf{H}_{0} \Big[1 - \mathbf{H}_{0} \Big] \mathbf{H}_{0} \Big] \mathbf{H}_{0} = \mathbf{H}_{0} \Big[1 - \mathbf{H}_{0} \Big] \mathbf{H}_{0} \Big] \mathbf{H}_{0} = \mathbf{H}_{0} \Big[\mathbf{H}_{0} \Big] \mathbf{H}_{0} \Big] \mathbf{H}_{0} \Big] \mathbf{H}_{0} = \mathbf{H}_{0} \Big[\mathbf{H}_{0} \Big] \mathbf{H}_{0} \Big] \mathbf{H}_{0} = \mathbf{H}_{0} \Big] \mathbf{H}_{0} \Big] \mathbf{H}_{0} = \mathbf{H}_{0} \Big[\mathbf{H}_{0} \Big] \mathbf{H}_{0} \Big] \mathbf{H}_{0} = \mathbf{H}_{\mathbf$	$+\left(\frac{T}{T_c}\right)^2$	B)	H _C =	$H_0 \left[1 - \left(\frac{T}{T_c} \right)^1 \right]$	/2]	
	C)	$\mathbf{H}_{\mathbf{C}} = \mathbf{H}_{0} \left[1 - \mathbf{H}_{0} \right] $	$-\left(\frac{T_{C}}{T}\right)^{2}$	D)	$H_{C} =$	$H_0 \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$]	
28.	The in A) C)	put and output In phase Always negat	-	a common – B) D)	А	amplifier are i lways equal ut of phase	n:	
29.		n of the followin me temperature Micro canonia Canonical ens	e T, Volum cal ensemb	e V and the	chemic Grand		s :-	es having
30.	each m A)	ocess of interfa nemory location Memory acce	ns is called	: B)	Bus id	le cycle	ating ad	dresses to
	C)	Memory map	ping	D)	Implie	d addressing		
31.	The G A) C)	P Thomson ex Very light ma Hall effect				nature of elect e nature of ele		

- Under what condition is the Born approximation valid?
 A) Strong magnetic field at low energies
 B) Weak potentials at high energies
 C) Weak potentials at low energies
 D) Strong potentials at high energies 32.

33.	An element 90 A ²³² under goes an alpha disintegration. The atomic and mass nu A) 88, 228 B) 90, 228	a, beta, beta, alpha decay radiative amber of the final element formed will be : C) 89, 228 D) 88, 224
34.	ratio of number of ${}_5B^{10}$ to ${}_5B^{11}$ atoms	
	A) 20/53 B) 15/16	C) 19/81 D) 10/11
35.	 Particles and antiparticles have identica A) CPT invariance B) CP symmetry C) Charge conjugation and Parity D) Charge conjugation and time rest 	al masses and lifetimes. This is the implication of: eversal
36.	Out of the following which has negative	e charge?
	A) Top quarks B	, 1
	C) Charm D	D) None of the above
37.	decayed. The half-life of the isotope is:	
	A) 15 minutes B) 45 minut	tes C) 30 minutes D) 60 minutes
38.	Isospin symmetry, is a flavour symmet	ry of the strong interactions between:
	A) up and down quarks B	
	C) up and bottom quarks D	None of the above
39.	A structure with sharp diffraction peak	a
		s, but without lattice periodicity is called:
	A) Amorphous crystal B	B) Liquid -crystal
	1 1	B) Liquid -crystal
40.	A)Amorphous crystalBC)Quasi crystalD	B) Liquid -crystalD) Top quarks
40.	A)Amorphous crystalBC)Quasi crystalD	B) Liquid -crystal
40.	 A) Amorphous crystal B) Quasi crystal C) Quasi crystal D) D In liquid crystal systems, when the chin visible light the liquid crystal exhibits: A) Blue phases B) Blue phases 	 B) Liquid -crystal D) Top quarks ral pitch is of the same order as the wavelength of B) Bragg reflection
40.	 A) Amorphous crystal B) Quasi crystal C) Quasi crystal D) In liquid crystal systems, when the chin visible light the liquid crystal exhibits: 	 B) Liquid -crystal D) Top quarks ral pitch is of the same order as the wavelength of B) Bragg reflection
40. 41.	 A) Amorphous crystal B) Quasi crystal C) Quasi crystal D) D In liquid crystal systems, when the chin visible light the liquid crystal exhibits: A) Blue phases B) Blue phases 	 B) Liquid -crystal D) Top quarks ral pitch is of the same order as the wavelength of B) Bragg reflection D) Conic phases
	 A) Amorphous crystal B) Quasi crystal C) Quasi crystal D) Discotic phases C) Discotic phases C) Discotic phases C) An example of a 1-dimensional defect A) Interstitials A) B 	 B) Liquid -crystal D) Top quarks ral pitch is of the same order as the wavelength of B) Bragg reflection D) Conic phases in a crystal is: B) Voids
	 A) Amorphous crystal B) Quasi crystal C) Quasi crystal D) In liquid crystal systems, when the chin visible light the liquid crystal exhibits: A) Blue phases B) Discotic phases C) Discotic phases D) An example of a 1-dimensional defect 	 B) Liquid -crystal D) Top quarks ral pitch is of the same order as the wavelength of B) Bragg reflection D) Conic phases in a crystal is: B) Voids
41.	 A) Amorphous crystal B) Quasi crystal C) Quasi crystal D In liquid crystal systems, when the chin visible light the liquid crystal exhibits: A) Blue phases B) Discotic phases C) Discotic phases C) An example of a 1-dimensional defect A) Interstitials C) Stacking fault D) Discotic phases 	 B) Liquid -crystal D) Top quarks ral pitch is of the same order as the wavelength of B) Bragg reflection D) Conic phases in a crystal is: B) Voids D) Dislocations
	 A) Amorphous crystal B) Quasi crystal C) Quasi crystal D) Discotic phases C) Discotic phases C) Discotic phases C) An example of a 1-dimensional defect A) Interstitials A) B 	 B) Liquid -crystal D) Top quarks ral pitch is of the same order as the wavelength of B) Bragg reflection D) Conic phases in a crystal is: B) Voids D) Dislocations of kinetic energy is exhibiting:
41.	 A) Amorphous crystal B) Quasi crystal C) Quasi crystal D) Discotic phases C) Discotic phases C) Discotic phases C) An example of a 1-dimensional defect A) Interstitials C) Stacking fault C) A liquid which can flow without loss on 	 B) Liquid -crystal D) Top quarks ral pitch is of the same order as the wavelength of B) Bragg reflection D) Conic phases in a crystal is: B) Voids D) Dislocations of kinetic energy is exhibiting: B) Bose-Einstein Condensation

43.	In precision metrology, the Josephson effect provides an exactly reproducible conversion
	between:

- A) Frequency and voltage
- B) Frequency and current
- C) Frequency and magnetic flux
- D) Current and voltage

C)

A)

44. BCS theory can explain superconductivity exhibited by:

- A) Type I superconductors B) NbTi
 - Type II superconductors D) All of the above

45. Divergent susceptibility is a characteristic of ----- phase transitions.

- Second order B) First order
- C) First and second order D) Intermittent

46.	For B	essel's function	on of the	first kind x .	$J_{n-1}(x) + x$	$J_{n+1}(x) =$		
	A)	$2n J_n(x)$	B)	$x J_n(x)$	C)	$n J_n(x)$	D)	0

- 47. In the Kronig-Penny model, there are certain values of *Energy* for which there are no eigenfunctions of the Schrödinger equation, these values constitute the
 - A) Brillouin zone B) Band gap
 - C) Pseudo potential D) None of the above

48. The fraction of electrons that contribute to specific heat follow:

- A) Bose Einstein Statistics B) Maxwell Boltzmann statistics
- C) Farmi-Dirac statistics D) Pauli exclusion principle

49. The directions in which scattering from a crystal can have non-zero intensity is given by:

- A) The structure factor B) The reciprocal lattices
- C) The miller indices D) None of the above
- 50. The basis vectors of a real BCC lattice and the reciprocal lattice of an FCC resemble each other:
 - A) In both direction and magnitude
 - B) In magnitude but not in direction
 - C) In direction but not in magnitude
 - D) Neither direction or magnitude

51. The Bravais lattice of------ system have $a = b \neq c$ and $\alpha = \beta = \gamma = 90^{\circ}$

A) Hexagonal B)	Tetragonal
-----------------	------------

- C) Trigonal D) Pentagonal
- 52. Time-dependent perturbation theory explains the effect of :
 - A) A time-dependent perturbation applied to a time-independent Hamiltonian
 - B) A time-independent perturbation applied to a time-independent Hamiltonian
 - C) A time-dependent perturbation applied to a time-dependent Hamiltonian
 - D) A time-independent perturbation applied to a time-dependent Hamiltonian

50	TT1 (1 (1 (C '1)	1 1 11	1 11 11	1
24	The theory that tails to ex	nlain collective	phenomenon like solitons a	nd cooper pairs is
55.	The theory that fails to en			

	•	
A) WKB	approximation

- B) Variation method
- C) Perturbation D) All of the above

54. Experiment demonstrating the observation of a single, eigenvalue of an initially unknown physical property is:

- A) Crompton effect B) Double slit experiment
- C) Stern-Gerlach experiment D) Photo-electric effect
- 55. An atom in an excited state temporarily stores energy. If the lifetime of this excited state is measured to be 1×10^{-10} seconds, what is the minimum uncertainty in the energy of the state in eV? Use h= 6.63 x 10^{-34} Js and $\pi = 3.14$
 - A) 1.3 x 10⁻⁶ B) 3.3 x 10⁻⁸ C) 1.3 x 10⁻⁸ D) 3.3 x 10⁻⁶
- 56. Moment of inertia of a circular wire of mass M and radius R about its diameter is: A) $\frac{1}{2}MR^2$ B) $2MR^2$ C) $\frac{1}{4}MR^2$ D) MR^2
- 57. Young's Double-slit interference experiment with light established that light is:
 - A) A particle
 - B) A wave
 - C) Capable of both particle and wave nature
 - D) None of the above

58. Maxwell's classical view of electromagnetic wave is unable to explain:

- A) Blackbody radiation B) Photoelectric effect
- C) Both A and B D) Neither A nor B

59. The fields associated with retarded potential travel at a speed :

- A) Equal to speed of light B) Two times speed of light
- C) Half speed of light D) Four times speed of light
- 60. A diploe having a 3 cm length is operated at 1 Ghz. The radiation resistance is: A) 7.89 Ω B) 2.49 Ω C) 1.00 Ω D) 3.49 Ω
- 61. The polarization current in a material is the result of
 - A) Spin motion of electrons
 - B) Orbital motion of electrons
 - C) Spin and orbital motion of electrons
 - D) None of the above
- 62. In a rectangular hollow wave guide, the following cannot occur:
 - A) TE wave B) TEM wave C) TM wave D) H wave
- 63. How will the potential be inside an enclosure completely surrounded by a conducting material with no charge inside the enclosure?
 - A)UniformB)Non-uniformC)ConstantD)None of the above

64.	The energy of an ide A) $U = -p.E$	eal dipol B)	le in an electr U = p.E	ic field E C)	t is given by; $U = -\nabla E$	D)	$\mathbf{U} = . \nabla \mathbf{E}$
65.	How many azimuth number n=4 showin A) 8				te with the prine 9	cipal qu D)	antum 16
66. 67.	The spectrum of He A) 4 Normal Zeeman eff with specific charge what will be the sep A) 0.0319 Å	B) ect is ob e of 3.52	8 served when x 10 ¹¹ coloun	C) a magnet nbs/Kg. I	12 tic field of 2 We	D) eber/m ²	16 on a material
68.	A system is composed ground state. The frequencies of the system is composed by the system of the sy	action of	f all atoms wl				
69.	The frequency of the frequency of the lin A) $4 f_0$						z. Then the $34 f_0$
70.	The value of "Land A) Zero	e-g-facto B)	or" for pure of Infinite	rbital mo C)	tion is: Unity	D)	Two
71.	According to Born- transitions is due to A) Translationa C) Vibrational	: l change		Vibra	ne structure in t ational and rot tional changes		
72.	The lowest energy t A) ${}^{5}F_{3/2}$	erm for B)	Ru (4d ⁷ 5s) 5 F 5	C)	⁷ F _{1/2}	D)	⁷ F ₅
73.	What type of Rama A) Depolarized C) Polarized		produced as a B) D)	Partia	f non-symmetri ally Polarized e of the above	c vibrat	ion?
74.	Baryon numbers for A) $-1, +1$	Baryon B)	s and Antiba +1, +1	ryons has C)		D)	-1, -1
75.	Spin of photo in uni A) $\frac{1}{2}$	ts of (h/2 B)	2π) is: 0	C)	1	D)	None of these
76.	The third componer Neutron N is: A) $(N - Z)/2$		-		atomic number $(N+Z)/2$	Z and to D)	otal number of None of these

77.	The Fourier transform of $e^{- t }$	_
	A) $\sqrt{\frac{2}{\pi}} \times \left(\frac{1}{1+\omega^2}\right)$ B)	$\sqrt{\frac{\pi}{2}} \times \left(\frac{1}{1+\omega^2}\right)$
	C) $\sqrt{\frac{2}{\pi}} \times \left(\frac{1}{1-\omega^2}\right)$ D)	$\sqrt{\frac{\pi}{2}} \times \left(\frac{1}{1-\omega^2}\right)$
78.	$\frac{1}{2\pi i} \oint_C \frac{e^{3z}}{z^2 + 1} dz = .$	
	A) Cos 3 B) Sin 3	C) Tan 3 D) 0
79.	The residue at infinity for $f(z) = \frac{1}{(z-a)}$	$\frac{z}{b(z-b)}$ is
	A) 1 B) 0	C) 1/2 D) -1
80.	The coefficient of x^2 in the Taylor series a	about $x = 0$ for $f(x) = e^{-x^2}$
	A) $\frac{1}{4}$ B) -1	
81.	The scientific parameter that describes the A) Resolution B) Sensitivity	· ·
82.	In a microprocessor the interrupt with hig A) RST 7.5 B) INTR	ghest priority is : C) TRAP D) RST 5.5
83.	The following modulus counters can be co	onstructed using four flip-flops
05.	A) 2, 8, 16, 32 B)	8, 16, 24, 32
	C) 2, 3, 9, 16 D)	4, 8, 12, 16, 20
84.	is used to momentarily store binary matrix	information at the output of an encoding
	A) Registers B)	A/D convertor
	C) Flip flops D)	D/A convertor
85.	The ideal value of common mode rejectio	
	A) Unity B) Zero	C) Infinity D) Not defined
86.	In the construction of a LED, regarding the A)A)Thickness of p-layer = Thickness of P-layer > Thickness of P-layer < Thickness of P-layer < Thickness of D)B)Thickness of p-layer < Thickness of P-layer < Thickness of 	of n layer
87.	For a PIN photo detector the maximum a	absorption of light takes place in the
	A) P region B)	I region
	C) N region D)	Equal in all three layers

88.		single junction um is:	solar co	ell the tł	neoretic	al effici	ency limit un	der AM	1.5 solar
	A)	33.7 %	B)	30.3 %	0	C)	66.3 %	D)	69.7 %
89.		gle stage transis d.c. load of	stor amp	olifier w	vith coll	ector lo	ad R_C and em	itter resi	stance R _E
	A)	R _C	B)	$R_{\rm C} + I$	R _E	C)	$R_C \parallel R_E$	D)	$R_{\rm C}$ - $R_{\rm E}$
90.		onfiguration is u Out impedance		-			because its impedance is	low	
	A) C)	Out impedance		• •		.	impedance is		h
91.	-	urpose of a cou							
	A) C)	Increase outp Provide bias			B) D)		et the transiste AC and block		
92.		Vien-bridge osc ased, the freque			sistance	es in the	e positive feed	lback cir	cuit are
	A)	Decreases	ency		B)	Increa	ises		
	C)	Remains the	same		D)		ot predict		
02	T., 41, -	1		7	. 1. 11	1'1			
93.	A)	breakdown reg Ideal current	gion, a Z	Lener di	ode ber B)		ant current	rce.	
	C)	Constant volt	age		D)		ant resistanac	e	
	0)	Constant von	uge		D)	Const	ant resistance	e	
94.	The c	onstant-current							
	A)	Cut off the sa			B)		off and break	down	
	C)	Cut off and p	inch off	ť	D)	None	of the above		
95.	1 db c	orresponds to -	cha	ange in j	power l	evel.			
	A)	50 %	B)	35 %	L	C)	26 %	D)	22 %
96.	The d	ifference betwe		nions an	d bosoi	ns is tha	t bosons' wav	ve functio	on is
	A)	Differentiable			B)	Conti			
	C)	Single valued	1		D)	Symn	netric		
97.	The s	un emits maxin	num rad	liation o	of 0.52 1	nicron 1	neter. Assum	ing the s	un to be a
		body, calculate							
	A)	$5.47 * 10^7 W_{-}$			B)		10^{7} W/m^{2}		
	C)	$4.47 * 10^7 W_{\odot}$	$/m^2$		D)	3.47 *	10^7 W/m^2		
98.	The F mater	ermi energy of ial?	a mater	rial is 3.	45 eV.	What is	the zero-poir	nt energy	of the
	A)	1.02 eV	B)	3.45 e	V	C)	2.07 eV	D)	4.16 eV
99.	Bose-	Einstein statisti	ics can l	he annli	ed to				
<i>,,</i> ,	A)	Electrons	B)	Fermi		 C)	Protons	D)	Photons
	,		,			,		,	

100.	 Which one of the following thermodynamic quantities is not a state function? A) Gibbs free energy B) Work C) Enthalpy D) Entropy
101.	 For a micro-canonical ensemble the phase density inside a small energy interval remains constant and outside such a region it is: A) Same as inside B) Zero C) We cannot predict about energy outside D) Depends on outside condition
102.	Phase space is a dimensional space.A) 6B) 3C) 2D) 5
103.	A system suffers an increase in internal energy of 80 J and at the same time has 50 J of work done on it. What is the heat change of the system? A) - 30J B) +130 J C) + 30 J D) - 130 J
104.	A piston cylinder contains air at 600 kPa, 290 K and a volume of 0.01m^3 . A constant pressure process gives 54 kJ of work out. Find the final volume of the air. A) 0.05 m^3 B) 0.15 m^3 C) 0.01 m^3 D) 0.1 m^3
105.	The Eigen value of a particle in a box of length L is A) $\sqrt{\frac{L}{2}}$ B) $\frac{2}{L}$ C) $\sqrt{\frac{2}{L}}$ D) $\frac{L}{2}$
106.	 A scattered wave can be considered to be a plane wave only when: A) The scattering potential is much smaller than the particles incident kinetic energy B) The scattering potential is larger than the particles incident kinetic energy C) The scattering potential is equal to than the particles incident kinetic energy D) None of the above
107.	If A, B, and C represent the Pauli spin matrices then the commutator of C and A will be:A)2 iBB)2CC)2 iAD)0
108.	 According to Fermi's golden rule the probability that an excited state will decay depends on the A) Energy of excited states B) Energy of ground state C) Density of states D) None of the above
109.	Which of the following expression is correct if at $t = 0$, object is at origin and velocity is $v_0 = i + j$ A) $r = i(2.5t^2 + t) + j(t-1.5t^2)$ B) $r = i(2.5t^2 - t) + j(t+1.5t^2)$ C) $r = it-jt^2$ D) $r = i(t^2+t) + j(t-t^2)$

- 110. During inelastic collision between two bodies, which of the following quantities always remain conserved?
 - A) Speed of each body B) Total kinetic energy
 - C) Total mechanical energy D) Total linear momentum
- 111. The solution to the given system of equations $2X_1-9X_2=15$ and $3X_1+6X_2=16$ is:
 - A) $X_1 = 6, X_2 = -(1/3)$ B) $X_1 = 4, X_2 = -(1/3)$
 - C) $X_1 = -6, X_2 = (1/3)$ D) $X_1 = -4, X_2 = -(1/3)$
- 112. Rank of the matrix $\begin{bmatrix} 0 & -7 & 8 \\ 7 & 8 & -1 \\ -8 & 1 & 0 \end{bmatrix}$ is:
 - A) 3 B) 1 C) 2 D) 0
- 113. If the population mean of number of fish caught per trip to a particular fishing hole is 3.2 and the population standard deviation is 1.8, what are the mean and standard deviation of the sampling distribution for samples of size 36 trips respectively?
 A) 1.8, 11.25 B) 3.2, 0.3 C) 1.8, 0.53 D) 3.2, 0.9
- 114. The angular momentum of a rigid body rotating about an axis passing through the origin of the local reference frame is the product of the.
 - A) Moment of inertia and velocity
 - B) Momentum and velocity
 - C) Inertia tensor of the object and the linear velocity
 - D) Inertia tensor of the object and the angular velocity
- 115. The mean = np and the standard deviation = \sqrt{npq} for:
 - A) For all probability distributions
 - B) Normal distribution
 - C) Binomial distribution
 - D) Poissson distribution
- 116. The explanation for as to why a pendulum swings backwards when the car from whose ceiling it hangs accelerates forwards is explained by:
 - A) Pseudo force B) Special Theory of relativity
 - C) Genera theory of relativity D) Coriolis force
- 117. Action angle variables are generated by transformations using
 - A) Recursive generations B) Non-recursive generations
 - C) Time-independent generating function
 - D) Time dependent generating function
- 118. What is the value of Legendre polynomial $P_{2n+1}(0)$? A) 2/(2n+1) B) 1 C) 0 D) None of these

119.
$$\int_{0}^{\infty} \frac{1}{(1+x^{4})} dx =$$
A) $\sqrt{3\pi} / 6$ B) $\sqrt{3\pi} / 4$ C) $\sqrt{2\pi} / 4$ D) $\sqrt{2\pi} / 6$

120. If m is an integer less than n then $\int_{-1}^{1} x^{m} P_{n}(x) dx =$
A) 1 B) 2 C) $\frac{1}{2^{n}}$ D) 0