A 120 MINUTES

19724

- 1. Dimension of Lagrangian is -----.
 - A) MLT⁻¹ B) MLT⁻² C) ML²T⁻¹ D) $ML^{2}T^{-2}$
- 2. If $\vec{A} = \frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}$ and $\vec{B} = \frac{1}{2}\hat{i} + \frac{\sqrt{3}}{2}\hat{j}$ then the angle between the two vectors is:
 - A) 60° B) 45° C) $\frac{\pi}{6}$ radians D) $\frac{\pi}{3}$ radians
- 3. Which among the following is TRUE?
 - A) $\nabla^2 \varphi = \nabla . (\nabla \varphi)$ B) $\nabla^2 \varphi = \nabla X (\nabla \varphi)$
 - C) $\nabla^2 \varphi = \nabla X (\nabla X \varphi)$ D) None of these
- 4. Which among the following quantities is not a vector?
 - A) moment of inertia B) linear momentum
 - C) angular momentum D) moment of a force
- 5. Every square matrix A can be uniquely expressed as the sum of -----.
 - A) a Unitary matrix and a non-unitary matrix
 - B) a Hermition matrix and a Skew-Hermition matrix
 - C) two Hermition matrices
 - D) a Hermition matrix and a unitary matrix
- 6. Which among the following statement is TRUE for a Skew-Hermition Matrix?
 - A) diagonal elements must be real numbers
 - B) diagonal elements should be complex numbers with nonzero real and imaginary parts
 - C) diagonal elements can only be pure imaginary numbers
 - D) diagonal elements can be only pure imaginary numbers or zero
- 7. For a singular matrix A, which among the following statements is TRUE?

A)	A = 0	B)	A < 0	C)	A > 0	D)	$ A \neq 0$
/							

- 8. Newton's equation of motion is a ------differential equation of -----order
 - A) non-linear, second B) linear, second
 - C) nonlinear, first D) none of these
- 9. Find the Fourier sine transform of e^{-x}

A)
$$\frac{n^2}{1-n^2}$$
 B) $\frac{1-n^2}{n^2}$ C) $\frac{n}{1+n^2}$ D) $\frac{1+n^2}{1-n^2}$

10.	The re	esidue of $\frac{1}{(Z-a)}$	$\frac{Z}{D(Z-b)}$	at infini	ty is				
	A)	$\frac{a}{b}$	B)	$-\frac{b}{a}$		C)	1	D)	-1
11.	If f(z) closed A) C)	is a regular fur l contour C, the Cauchy's theo Residue theor	nction on $\int_c f(z)$ orem	f z and	if f(z) is) . This B) D)	s contin is Riema Drichl	uous at each po in equality lett condition	oint with	nin and on a
12.	For th	the function $f(z)$	$(z) = \frac{1}{(z)}$	z^{4}	(z-3)(z-3)	$\frac{1}{2}$; the p	sole at $z = 1$ is c	of	order.
	A)	1	B)	2		C)	3	D)	none of these
13.	Give called	$\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2$	2vy =	0, when	re v is a	parame	eter . This diffe	rential e	equation is
	A) C)	Legendere's e Hermite equa	equation tion	1	B) D)	Lague Assoc	rre's equation iated Lauguerr	e's equa	ation
14.	If the horse A)	probability tha B winning the 1/15	t a hor race is 1 B)	se A wi 1/5 , the 1/3	inning a probab	a race is ility tha C)	s $1/3$ and the p at one of the ho 2/5	probabil rses wir D)	ity that another as is None of these
15.	The ratestima	adius of a $_{29}Cu^6$ ated to be:	⁴ is me	easured	to be 4.	8F. Rac	lius of a $_{12}Mg$	y^{27} nucl	eus can be
	A)	2.80 F	Б)	/.1 Г		C)	3.1 Г	D)	3.0 F
16.	In an A) C)	inelastic collisio linear momen Total energy	on tum	is not	B) D)	ved Kineti none o	c energy of these		
17.	The d	ensity of the ${}_6C$	¹² nucl	eus is					
	A)	$24 \times 10^{17} kg$	/m ³		B)	2.4 ×	$10^{19} kg/m^3$		
	C)	$2.4 \times 10^{17} kg$	/m ³		D)	24 ×	$10^{19} kg/m^3$		
18.	Which A) B) C) D)	h among the fol holonomic co non-holonomic Constraint for A constraint c	lowing nstraint ic const ce corr can be h	is true f can be traint ca espondi olonom	for cons express n be exp ng to rh nic and s	traints sed as an pressed neonome scleronc	n algebraic equ as a differentia ous constraints omous at the sa	ation al equat cannot me time	ion do work e
19.	Hami	lton's principle	is defin	ed in					

- - A) C) configuration space eucledian space B) D) phase space none of these

- 20. Which among the following is NOT TRUE?
 - Generalized coordinates can have any dimension A)
 - Generalized momenta should always have the dimension of angular momentum B)
 - Lagrangian is defined in terms of generalized coordinates, generalized velocities C) and time.
 - D) Hamiltonian and Lagrangian are related through Legendre transformation
- 21. Law of conservation of angular momentum is a consequence of ------.
 - Homogeneity of space A)
 - Isotropy of space B)
 - C) Homogeneity of flow of time
 - Law of conservation of energy D)
- 22. Hamilton-Jacobi method is used for solving -----systems.
 - A) conservative B) nonconservative
 - holonomic D) C) periodic
- 23. For a particle moving under central force, -----is conserved.
 - linear momentum kinetic energy A) B)
 - angular momentum D) potential energy C)
- 24. α , β , γ radiations come out of a radio-active substance:

A)	When it is heated	B)	When put in an atomic reactor
C)	Spontaneously	D)	By hitting it by other particles

- 25. When an electron and a positron meet together, two photons are produced. This process is
 - A) Alpha decay B) Nuclear fusion
 - C) Annihilation of matter D) Beta decay
- 26. Which among the following is the spallation reaction?
 - Radio activity Nuclear fission A) B)
 - Nuclear fusion C) D) All the above
- 27. Complete the following nuclear reaction

called:

$$_{3}Li^{7}+_{2}He^{4} \rightarrow \dots +_{0}n^{1}$$

A) $_{8}O^{6}$ B) $_{5}B^{10}$ C) $_{1}H^{1}$ D) $_{8}O^{17}$

- Number of degrees of freedom for a mass point constrained move along the circumference 28. of a circle = -----. A) 1 B) 2 C) 3 D) 0
- 29. The spin and charge of down quark is

A)
$$\left(\frac{1}{2} and \frac{-1}{3}e\right)$$

B) $\left(\frac{1}{2} and \frac{2}{3}e\right)$
C) $\left(\frac{1}{2} and \frac{-1}{2}e\right)$
D) $\left(\frac{-1}{2} and \frac{-2}{3}e\right)$

C)
$$\left(\frac{1}{2} and \frac{-1}{2}e\right)$$
 D) $\left(\frac{-1}{2}an\right)$

- 30. Modified Ampere's circuital law is expressed as ----(Symbols have their usual meaning; quantities in bold represent vectors)
 - A) $\nabla . \boldsymbol{J} = -\frac{\partial p}{\partial t}$ B) $\nabla x \mathbf{H} = \frac{\partial p}{\partial t} + D$
 - C) $\nabla \mathbf{x} \mathbf{H} = \mathbf{J} + \frac{\partial p}{\partial t}$ D) none of these

31. Considering planes waves propagating in homogeneous non-permeable but anisotropic dielectric, for a given wave vector k, there are ------distinct modes of propagation with different phase velocity satisfying Fresnel equation.

- A) 2 B) 4 C) 3 D) 6
- 32. Poynting vector has the dimension as-----.A) Energy B) Energy per unit area

A)	Energy	В)	Energy per unit area
C)	Power	D)	Power per unit area

33. For a plane electromagnetic wave in free space which of the following relations is true (terms have usual meaning)

A)
$$E = \varepsilon_0 cH$$
 B) $E = \varepsilon_0 H$ C) $H = \varepsilon_0 cE$ D) $H = \mu_0 \varepsilon_0 E$

- 34. When an electromagnetic wave propagates through a conducting media, which among the following statement is TRUE?
 - A) div **E=0** B) div $\mathbf{H} \neq \mathbf{0}$ C) Curl $\mathbf{H} = \mathbf{0}$ D) Curl $\mathbf{E} = \mathbf{0}$
- 35. A plane electromagnetic wave travels through a uniform plasma. If the Poyntings vector is zero, then ------.
 - A) frequency of the wave is greater than the plasma frequency
 - B) frequency of the wave is less than the plasma frequency
 - C) frequency of the wave and plasma frequency are equal
 - D) none of these
- 36. During reflection and refraction of electromagnetic wave, which of the following statement is true?
 - A) frequency of the wave is unchanged in reflection but changes during refraction
 - B) frequency of the wave is changed during reflection but unchanged during refraction
 - C) frequency of the wave remains unchanged during reflection and refraction
 - D) frequency of the wave always changes during both reflection and refraction

37. For a rectangular wave guide, -----is called the principal or dominant mode

A) TE_{01}	B)	TM_{01}	C)	TE_{02}	D)	none of these
--------------	----	-----------	----	-----------	----	---------------

- 38. In a rectangular wave guide which of the following statement is TRUE
 - A) TEM waves can propagate along the axis
 - B) TM_{01} mode can exist
 - C) The phase velocity V_g is greater than c while guide velocity V_z is less than c
 - D) TE_{01} mode cannot exist

39.	A rod length speed	of proper lengt of the rod is 0 of light.	th 1 metr .8 m. Th	re long e veloc	is movi ty of th	ng alon ne rod v	ng its length. with respect t	For an ob o earth is	oserver in earth the ; c is the
	A)	c	B)	0.8c		C)	0.66c	D)	none of these
40.	Meson A) B) C) D)	n paradox can b length contra- time dilation both length co none of these	be explai ction ontractio	ned usion and t	ing	 ation			
41.	An α-j movin A)	particle is moving photon. The 1.7c	ing with relative B)	a speed velocit	d of 0.7 y of the	c in a d photon C)	lirection opposite with respect 0.7c	osite to th t to the α- D)	e direction of a particle is 0.3c
42.	The te	emperature of the	ne antife	rromag	netic -to	o- parar	magnetic tran	sition is c	called:
	A) C)	Debye temper Curie - Weiss	rature s tempera	ature	B) D)	Neel t None	emperature of the above		
43.	The m A)	agnetic suscep +1	tibility o B)	of a sup 0	er cond	uctor is C)	-1	D)	None of these
44.	Which A) B) C) D)	ch among the following is TRUE? Constancy of speed of light is consistent with Galilean transformations Constancy of speed of light is not consistent with Fourier transformations Constancy of speed of light is not consistent with Galilean transformations Constancy of speed of light is consistent with Fourier transformations.							
45.	Maxin wavel A)	num kinetic en ength 1200Å is 3000 Å	ergy of p s 9.93 x1 B)	0 ⁻¹⁹ J. T 1000 J	ectron e he thres Å	emitted shold wa C)	from a metal avelength for 300 Å	when rac the meta D)	diation of ll is none of these
46.	A 'fre A) B) C) D)	e quantum mec plane wave w spherical wav exponentially none of these	chanical with defin ye decayin	particle nite way	e' is rep velengtl e	resented	d by a		
47.	Expec A) B) C) D)	tation value of functions of s functions of t not functions constants	a dynam pace ime of space	nical va	uriable a me	re in ge	eneral		
48.	The co A) C)	onductivity of a $\sigma = (n_e e \mu_e - \sigma)$ $\sigma = (n_e e^2 \mu_e)$	a semico + n _h eμ _h + n _h eμ	nducto u_h) u_h)	r can be B) D)	$\sigma = (\tau \sigma)$ $\sigma = (\tau \sigma)$	n as - $n_e \mu_e + n_h e_h$ $n_e e \mu_e + n_h$	(μ_h) $e^2\mu_h)$	

- 49. In a superconducting state -
 - A) Entropy increases & thermal conductivity decreases
 - B) Entropy & thermal conductivity decreases
 - C) Entropy & thermal conductivity increases
 - D) Entropy decreases & thermal conductivity increases
- 50. For a particle confined in a rectangular potential well with finite walls, (E<V) which among the following is NOT TRUE?
 - A) energy eigenvalues are discrete
 - B) wave functions are symmetric or antisymmetric about the symmetry point
 - C) wave function vanish at the boundary of the well
 - D) minimum energy permitted is not zero
- 51. For a particle confined in a two dimensional square well with impenetrable walls the ----
 - A) ground state has two fold degeneracy
 - B) ground state is non degenerate
 - C) first excited state is non degenerate
 - D) all energy states are degenerate
- 52. For a particle confined in a one dimensional finite square well centered at x = 0 and width 2a, the expectation value of position when it is in the ground state is ------.
 - A) x=a/2 B) x=0 C) x=a/4 D) none of these
- 53. Which among the following statement is TRUE?
 - A) If two Hermition operators commute they have simultaneous eigen values
 - B) Hermition operators can have both real and imaginary eigen values
 - C) For Hermition operators eigen functions corresponding to two different eigen values are orthogonal
 - D) None of these
- 54. For a particle confined in a one dimensional square potential well of infinite height and a one dimensional harmonic oscillator the quantum number corresponding to ground state are -----respectively.
 - A) 1 and 1 B) 1 and 0 C) 0 and 1 D 0 and 0
- 55. Which among the following commutation relations is TRUE?

A)
$$[\hat{Y}, \widehat{L_Y}] = 0$$
 B) $[\hat{Y}, \widehat{L_Z}] = 0$

- C) $[\hat{Y}, \hat{L_X}] = i\hbar \hat{Z}$ D) none of these
- 56. Which among the following dynamical variables can have half integer quantum numbers?
 - A) linear momentum of a particle confined in a square well
 - B) total energy of one dimensional linear harmonic oscillator
 - C) orbital angular momentum of a quantum mechanical particle
 - D) total angular momentum of a quantum mechanical particle

- 57. Which among the following techniques can be used for calculating the ground state energy of He atom?
 - A) Time dependent perturbation theory
 - B) Variational principle
 - C) Harmonic approximation
 - D) Bloch theorem
- 58. Origin of electronic energy bands in a crystalline solid can be qualitatively accounted using
 - A) Time independent perturbation theory
 - B) Time dependent perturbation theory
 - C) Kronig-Penny model
 - D) Variational principle
- 59. The wave function corresponding to a system consisting of two identical particles is symmetric with respect to exchange operation, then the one value possible for intrinsic angular momentum in unit of \hbar is -----.
 - A) 1/2 B) 1 C) 3/2 D) none of these
- 60. Which among the following particles obey Pauli's exclusion principle?
 - A) gravitons B) photons
 - C) cooper pairs D) none of these
- 61. The registers used in pocket calculators are -
 - A) Shift register B) Static shift register
 - C) Buffer shift register D) Dynamic MOS
- 62. Anomalous Zeeman effect is explained using the theory of ------.
 - A) spin angular momenta B) spin-orbit coupling
 - C) orbital angular momenta D) variational principle
- 63. Energy spectrum of an unbound quantum mechanical particle is ------.
 - A) continuous
 - B) discrete
 - C) partly continuous and discrete
 - D) continuous or discrete

64 Asynchronous counters are also known as:

- A)Decade counterB)Multiple clock counterC)Dimple counterD)
- C) Ripple counter D) Modulus counter
- 65. In a Fourier transform spectrometer, spectra is recorded in ------.
 - A) frequency domain B) time domain
 - C) energy domain D) intensity domain
- 66. Which among the following is an example for a four level laser?

A)	Ruby laser	B)	CO ₂ laser
----	------------	----	-----------------------

C) Diode laser D) He-Ne laser

67.	Elect rest is A)	romagnetic radiation is passir s transmitted. If the concentra exactly double	ng throu tion of t B)	igh a solution and a part of it is absorbed and the the solution is doubled, increase in absorption is less than double				
	Ć	more than double	D)	none	e of these			
68.	Whic A)	th among the following is an e CH ₄ B) HCl	example	of a sy C)	vmmetric top r CH ₃ F	nolecule? D)	H ₂ O	
69.	The r A) B) C) D)	otational spectral lines are shifted to lower wavenu shifted to higher wavenum shifted wither to lower or h are not shifted	when C umber si ber side igher w	¹² is sub ide avenun	stituted by C ¹	³ in CO. ending on	J	
70.	The r A)	number of normal modes of v 3 B) 2	ibration	for HB C)	er is 5	D)	none of these	
71.	Cond A) B) C) D)	lition for a molecular vibration it should be asymmetric it should cause a change in it should cause a change in it should not be IR active	n to be l polariza polariza	Raman ation ability	active is that -			
72.	Acco perio A) C)	rding to Frank Condon princ d of a molecule. much faster much slower	iple elec B) D)	ctronic sligh sligh	transition is - atly faster atly slower	that t	he vibrational time	
73.	The f A) C)	ine structure of E.S. R. Spect electron-nuclueon coupling electron-electron coupling	ra is due 5 B) D)	e to orbit nuc	 al-spin coupli leon-nucleon	ing coupling		
74.	Cryst A) C)	al structure of NaCl is simple cubic body centered cubic	B) D)	hexa face	gonal centered cubi	с		
75.	Whic A) C)	The among the following is a constant $\Delta k = G$ both A and B	Dirrect sta B) D)	atement 2k .(non	t of Laue's the $G + G^2 = 0$ e of these	eorem?		
76.	In a c centre A) C)	one dimensional diatomic late e of gravity fixed for acoustic mode transverse acoustic mode	tice, bot B) D)	h the a optic non	toms vibrate a cal mode e of these	against ea	ich other with their	
77.	Low A) B) C) D)	temperature lattice specific he Einstein's theory of specifi Bloch theorem Debye theory of specific he London theory	eat capa c heat eat	city of	solids is expla	iined by		

- 78. Tunnelling of Cooper pairs at -----is called Josephoson effect.
 - superconductor-superconductor A)
 - n-semiconductor-p-type semiconductor B)
 - superconductor-insulator-superconductor C)
 - superconductor-semiconductor D)
- 79. For an n-type semiconductor at ordinary temperatures, the Fermi level is ------.
 - exactly at the centre of the forbidden energy gap A)
 - closer to the conduction band B)
 - C) closer to the valence band
 - D) within the valence band
- 80. In the case of a ferroelectric crystal which among the following is TRUE?
 - A) it has electric dipole moment only when an external electric field is applied
 - centre of positive charge and centre of negative charge will coincide B)
 - electric dipole moment is temperature dependent C)
 - specific heat is temperature independent D)
- 81. Ferromagnetic crystals show magnetic hysteresis due to ------.
 - the presence of magnetic domains A)
 - B) the presence of uncompensated surface moments
 - the electron-phonon interaction C)
 - electron-nucleus interaction D)
- 82. Which among the following is NOT an intensive thermodynamic variable?
 - temperature B) A) pressure
 - C) volume D) magnetic field
- 83. Any thermometer works on the basis of -----.

A)

- law of minimum energy B) zeroth law of thermodynamics
- equipartition principle D) ergodic hypothesis C)
- 84. "A process whose sole result is to convert into work heat from a source at one temperature throughout is impossible". This is:
 - Third law of thermodynamics A)
 - First law of thermodynamics B)
 - C) Kelvin's statement of second law of thermodynamics
 - Calusius statement of second law of thermodynamics D)
- 85. Melting of ice is an example of -----phase transition.
 - first order second order A) B)
 - D) C) zeroth order lambda
- The probability of occupancy of Fermi level at 0°C and 100°C are respectively-----. 86. 1 and 1
 - none of these 0 and 1B) 1 and 0C) D) A)
- 87. -----ensemble is used for studying systems in equilibrium with a reservoir.
 - microcanonical B) canonical A)
 - C) grand canonical D) macrocanonical

89is the λ -transition temperature in liquid He. A) 4.2K B) 2.186°C C) 72K D) none of the 90. The minimum number of flip-flops required for a mod-12 ripple counter is: A) 3 B) 4 C) 6 D) 12 91. What is the value of $[L_z, L^2]$? A) 1 B) L ² C) $(L_x + L_y)$ D) 0 92. The direct evidence for the existence of magnetic moments of atoms and their space quantization is provided by the experiment. A) Davisson and Germer B) Hall effect C) Stern -Gerlach D) Stark effect 93. ${}^{92}U^{7*}$ is emitting an α -particle. The resulting nucleus is A) ${}^{91}Pa^{234}$ B) ${}^{90}Th^{234}$ C) ${}^{93}Np^{234}$ D) ${}^{92}U^{235}$ 94. Which of the following is Fermi's Golden rule? A) $\omega = \frac{2\pi}{k} H'_{kn} ^2 \rho(E_k)$ B) $\omega = \frac{2\pi}{k} H'_{kn} ^3 (E_k)$ C) $\omega = \frac{2\pi^2}{k} H'_{kn} ^2 \rho(E_k)$ D) $\omega = \frac{2\pi}{k} H'_{kn} \rho(E_k)$ 95. Consider a one dimensional infinite square well of width 1 cm with free electrons in it its Fermi energy is 2eV, what is the number of electrons inside the well? A) 46.2×10^7 B) 462×10^7 C) 0.462×10^7 D) 4.62×10^7 96. The Shell model of nucleus could explain A) Magic numbers B) Nuclear fission C) Nuclear fusion D) Both B and C 97. Neutrino is a A) Baryon B) Meson C) Lepton D) hyperon 98. A particle and its antiparticle have A) same spin and agne charges B) same spin and opposite charges B) and same charges C) different spin and opposite charges B) different spin and opposite charges B) different spin and different charges	88.	 For statistically analysing spectral distribution of black body radiation, one has to use A) Maxwell-Boltzmann statistics B) Fermi-Dirac statistics C) Bose-Einstein statistics D) Ergodic hypothesis 									
90. The minimum number of flip-flops required for a mod-12 ripple counter is: A) 3 B) 4 C) 6 D) 12 91. What is the value of $[L_z, L^2]$? A) 1 B) L ² C) $(L_x + L_y)$ D) 0 92. The direct evidence for the existence of magnetic moments of atoms and their space quantization is provided by the experiment. A) Davisson and Germer B) Hall effect C) Stern -Gerlach D) Stark effect 93. 92 U ²⁸ is emitting an α-particle. The resulting nucleus is A) 91Pa ²³⁴ B) 90Th ²³⁴ C) 92Np ²³⁴ D) 92U ²³⁵ 94. Which of the following is Fermi's Golden rule? A) $\omega = \frac{2\pi}{k} H'_{kn} ^2 \rho(E_k)$ B) $\omega = \frac{2\pi}{k} H'_{kn} ^3 (E_k)$ C) $\omega = \frac{2\pi^2}{k} H'_{kn} ^2 \rho(E_k)$ D) $\omega = \frac{2\pi}{k} H'_{kn} \rho(E_k)$ 95. Consider a one dimensional infinite square well of width 1 cm with free electrons in it its Fermi energy is 2eV, what is the number of electrons inside the well? A) 46.2×10^7 B) 462×10^7 C) 0.462×10^7 D) 4.62×10^7 96. The Shell model of nucleus could explain A) Magic numbers B) Nuclear fission C) Nuclear fusion D) Both B and C 97. Neutrino is a A) Baryon B) Meson C) Lepton D) hyperon 98. A particle and its antiparticle have A) same spin and opposite charges B) same spin and opposite charges D) different spin and opposite charges D) different spin and different charges	89.	 A)	A) 4.2K B) 2.186°C C) 72K D) none of these								
 91. What is the value of [L_z, L²]? A) 1 B) L² C) (L_x+L_y) D) 0 92. The direct evidence for the existence of magnetic moments of atoms and their space quantization is provided by the experiment. A) Davisson and Germer B) Hall effect C) Stern -Gerlach D) Stark effect 93. 92 U³⁸ is emitting an α-particle. The resulting nucleus is A) 91Pa²³⁴ B) 90Th²³⁴ C) 93Np²³⁴ D) 92U²³⁵ 94. Which of the following is Fermi's Golden rule? A) ω = ^{2π}/_k H'_{kn} ² ρ(E_k) B) ω = ^{2π}/_k H'_{kn} ³ (E_k) C) ω = ^{2π²}/_k H'_{kn} ² ρ(E_k) D) ω = ^{2π}/_k H'_{kn} ρ(E_k) 95. Consider a one dimensional infinite square well of width 1 cm with free electrons in it its Fermi energy is 2eV, what is the number of electrons inside the well? A) 46.2×10⁷ B) 462×10⁷ C) 0.462×10⁷ D) 4.62×10⁷ 96. The Shell model of nucleus could explain A) Magic numbers B) Nuclear fission C) Nuclear fusion D) Both B and C 97. Neutrino is a A) Baryon B) Meson C) Lepton D) hyperon 98. A particle and its antiparticle have A) same spin and opposite charges B) same spin and opposite charges C) different spin and opposite charges D) different spin and different charges 	90.	The m A)	iinimum numbo 3	er of flij B)	p-flops ro 4	equired	l for a m C)	od-12 ripple c 6	ounter i D)	s: 12	
 92. The direct evidence for the existence of magnetic moments of atoms and their space quantization is provided by the experiment. A) Davisson and Germer B) Hall effect C) Stern -Gerlach D) Stark effect 93. 92 U²⁸ is emitting an α-particle. The resulting nucleus is A) 91Pa²³⁴ B) 90Th²³⁴ C) 93Np²³⁴ D) 92U²³⁵ 94. Which of the following is Fermi's Golden rule? A) ω = 2π/μ H'_{kn} ² ρ(E_k) B) ω = 2π/μ H'_{kn} ³ (E_k) C) ω = 2π/μ H'_{kn} ² ρ(E_k) D) ω = 2π/μ H'_{kn} ρ(E_k) 95. Consider a one dimensional infinite square well of width 1 cm with free electrons in it its Fermi energy is 2eV, what is the number of electrons inside the well? A) 46.2×10⁷ B) 462×10⁷ C) 0.462×10⁷ D) 4.62×10⁷ 96. The Shell model of nucleus could explain A) Magic numbers B) Nuclear fission C) Nuclear fusion D) Both B and C 97. Neutrino is a A) Baryon B) Meson C) Lepton D) hyperon 	91.	What A)	is the value of 1	$\begin{bmatrix} L_z , L^2 \end{bmatrix}$ B)	$?$ L^2		C)	$(L_x + L_y)$	D)	0	
 93. 92 U³⁸ is emitting an α-particle. The resulting nucleus is A) 91Pa²³⁴ B) 90Th²³⁴ C) 93Np²³⁴ D) 92U²³⁵ 94. Which of the following is Fermi's Golden rule? A) ω = 2π/4 H'_{kn} ² ρ(E_k) B) ω = 2π/4 H'_{kn} ³ (E_k) C) ω = 2π²/4 H'_{kn} ² ρ(E_k) D) ω = 2π/4 H'_{kn} β(E_k) 95. Consider a one dimensional infinite square well of width 1 cm with free electrons in it its Fermi energy is 2eV, what is the number of electrons inside the well? A) 46.2×10⁷ B) 462×10⁷ C) 0.462×10⁷ D) 4.62×10⁷ 96. The Shell model of nucleus could explain A) Magic numbers B) Nuclear fission C) Nuclear fusion D) Both B and C 97. Neutrino is a A) Baryon B) Meson C) Lepton D) hyperon 98. A particle and its antiparticle have A) same spin and opposite charges B) same spin and same charges C) different spin and different charges 	92.	The di quanti A) C)	irect evidence f zation is provid Davisson and Stern -Gerlad	for the e led by t Germe ch	existence he ex r	of mag xperime B) D)	gnetic m ent. Hall et Stark e	noments of ato ffect effect	ms and	their space	
A) ${}_{91}Pa^{234}$ B) ${}_{90}Th^{234}$ C) ${}_{93}Np^{234}$ D) ${}_{92}U^{235}$ 94. Which of the following is Fermi's Golden rule? A) $\omega = \frac{2\pi}{k} H'_{kn} ^2 \rho(E_k)$ B) $\omega = \frac{2\pi}{k} H'_{kn} ^3 (E_k)$ C) $\omega = \frac{2\pi^2}{k} H'_{kn} ^2 \rho(E_k)$ D) $\omega = \frac{2\pi}{k} H'_{kn} \rho(E_k)$ 95. Consider a one dimensional infinite square well of width 1 cm with free electrons in it its Fermi energy is 2eV, what is the number of electrons inside the well? A) 46.2×10^7 B) 462×10^7 C) 0.462×10^7 D) 4.62×10^7 96. The Shell model of nucleus could explain A) Magic numbers B) Nuclear fission C) Nuclear fusion D) Both B and C 97. Neutrino is a A) Baryon B) Meson C) Lepton D) hyperon 98. A particle and its antiparticle have A) same spin and opposite charges B) same spin and opposite charges B) same spin and opposite charges D) different spin and different charges	93.	$92 U^{238}$	is emitting an o	-particl	e. The re	esulting	, nucleu	s is			
 94. Which of the following is Fermi's Golden rule? A) ω = 2π/k H'_{kn} ² ρ(E_k) B) ω = 2π/k H'_{kn} ³(E_k) C) ω = 2π²/k H'_{kn} ² ρ(E_k) D) ω = 2π/k H'_{kn} ρ(E_k) 95. Consider a one dimensional infinite square well of width 1 cm with free electrons in it its Fermi energy is 2eV, what is the number of electrons inside the well? A) 46.2×10⁷ B) 462×10⁷ C) 0.462×10⁷ D) 4.62×10⁷ 96. The Shell model of nucleus could explain A) Magic numbers B) Nuclear fission C) Nuclear fusion D) Both B and C 97. Neutrino is a A) Baryon B) Meson C) Lepton D) hyperon 98. A particle and its antiparticle have A) same spin and opposite charges B) same spin and opposite charges D) different spin and different charges 		A)	₉₁ Pa ²³⁴	B)	90Th ²³⁴		C)	93Np ²³⁴	D)	92U ²³⁵	
A) $\omega = \frac{2\pi}{k} H'_{kn} ^2 \rho(E_k)$ B) $\omega = \frac{2\pi}{k} H'_{kn} ^3 (E_k)$ C) $\omega = \frac{2\pi^2}{k} H'_{kn} ^2 \rho(E_k)$ D) $\omega = \frac{2\pi}{k} H'_{kn} \rho(E_k)$ 95. Consider a one dimensional infinite square well of width 1 cm with free electrons in it its Fermi energy is 2eV, what is the number of electrons inside the well? A) 46.2×10 ⁷ B) 462×10 ⁷ C) 0.462×10 ⁷ D) 4.62×10 ⁷ 96. The Shell model of nucleus could explain A) Magic numbers B) Nuclear fission C) Nuclear fusion D) Both B and C 97. Neutrino is a A) Baryon B) Meson C) Lepton D) hyperon 98. A particle and its antiparticle have A) same spin and opposite charges B) same spin and opposite charges C) different spin and different charges	94.	Which	n of the followi	ng is Fe	ermi's Go	olden ri	ule?				
C) $\omega = \frac{2\pi^2}{h} H'_{kn} ^2 \rho(E_k)$ D) $\omega = \frac{2\pi}{h} H'_{kn} \rho(E_k)$ 95. Consider a one dimensional infinite square well of width 1 cm with free electrons in it its Fermi energy is 2eV, what is the number of electrons inside the well? A) 46.2×10 ⁷ B) 462×10 ⁷ C) 0.462×10 ⁷ D) 4.62×10 ⁷ 96. The Shell model of nucleus could explain A) Magic numbers B) Nuclear fission C) Nuclear fusion D) Both B and C 97. Neutrino is a A) Baryon B) Meson C) Lepton D) hyperon 98. A particle and its antiparticle have A) same spin and opposite charges B) same spin and opposite charges D) different spin and different charges		A)	$\omega = \frac{2\pi}{h} \left H'_{km} \right $	$\left \int_{-\infty}^{2} \rho(E) \right ^{2}$	<i>k</i>)	B)	$\omega = \frac{2}{3}$	$\frac{2\pi}{h} \left H_{kn}^{\prime} \right ^{3} \left(E_{k} \right)$)		
 95. Consider a one dimensional infinite square well of width 1 cm with free electrons in it its Fermi energy is 2eV, what is the number of electrons inside the well? A) 46.2×10⁷ B) 462×10⁷ C) 0.462×10⁷ D) 4.62×10⁷ 96. The Shell model of nucleus could explain A) Magic numbers B) Nuclear fission C) Nuclear fusion D) Both B and C 97. Neutrino is a A) Baryon B) Meson C) Lepton D) hyperon 98. A particle and its antiparticle have A) same spin and opposite charges B) same spin and opposite charges D) different spin and different charges 		C)	$\omega = \frac{2\pi^2}{h} \left H'_k \right $	$n \Big ^2 \rho(l)$	E_k)	D)	$\omega = \frac{2}{3}$	$\frac{2\pi}{h}\left H_{kn}\right \rho(E_k)$)		
 96. The Shell model of nucleus could explain A) Magic numbers B) Nuclear fission C) Nuclear fusion D) Both B and C 97. Neutrino is a A) Baryon B) Meson C) Lepton D) hyperon 98. A particle and its antiparticle have A) same spin and opposite charges B) same spin and opposite charges C) different spin and opposite charges D) different spin and different charges 	95.	Consid its Fer A)	der a one dimen mi energy is 26 46.2×10^7	nsional eV, wha B)	infinite s at is the r 462×10	square v number) ⁷	well of of elect C)	width 1 cm with the trans inside the 0.462×10^7	th free e e well? D)	lectrons in it. If 4.62×10^7	
 97. Neutrino is a A) Baryon B) Meson C) Lepton D) hyperon 98. A particle and its antiparticle have A) same spin and opposite charges B) same spin and same charges C) different spin and opposite charges D) different spin and different charges 	96.	The SI A) C)	hell model of n Magic numb Nuclear fusio	ucleus ers on	could exj	plain B) D)	Nuclea	ar fission B and C			
 98. A particle and its antiparticle have A) same spin and opposite charges B) same spin and same charges C) different spin and opposite charges D) different spin and different charges 	97.	Neutri A)	ino is a Baryon	B)	Meson		C)	Lepton	D)	hyperon	
	98.	A part A) B) C) D)	ticle and its ant same spin and same spin and different spin different spin	iparticle l oppos l same and op and dif	e have ite charg charges posite ch ferent ch	es harges harges					

99.	Partic A) C)	les that are inv hadrons only hadrons and	olved in v leptons	weak in	teracti B) D)	on are - lepton charge	 s only ed particles		
100.	The e distan	lectric field into t r from the she	ensity \overline{E} eet is rela	due to ited as	an inf	inite uni	iformly charge	ed plane	sheet at a point
	A)	$\overline{E} \propto r^3$	B)	$\overline{E} \propto r^2$	2	C)	$\overline{E} \propto r$	D)	None of these
101.	For a follov A) B) C) D)	p-n junction for ving is TRUE? depletion reg depletion reg width of depl none of these	ion will t ion will t ion will t letion reg	heavily be widen be narro gion is ir	r ower ndepen	d n-and	p-type semico level of dopin	onductor 1g	s which among the
102.	Poten A)	tial barrier at a 10 -20 eV	p-n junct B)	tion is t <u>y</u> 2-3 eV	ypicall	y about C)	0.1-0.3 eV	D)	5-10 eV
103.	The a A) C)	tomic bond is S ionic bonds van der Waal	Si and Ge I's bonds	e are	B) D)	coord covale	inate bonds ent bonds		
104.	Knee 0.3 eV A)	voltage for p-n √. The semicon GaAs	i junction ductor us B)	diode r sed is GaSb	made u 	using an C)	indirect band Si	gap sen D)	niconductor is Ge
105.	Appro A) B) C) D)	a switch in se a battery in se a resistor in s none of these	lent circu eries with eries with eries with e	uit of a p a batte h a capa h a capa	o-n jun ry and citor acitor	ction di a resist	ode is or		
106.	What	is the energy o	f a unifo	ormly ch	narged	spheric	al shell of tota	al charge	q and radius R?
	A)	$\frac{q}{8\pi\epsilon_0 R}$			B)	$\frac{q^2}{8\pi\epsilon_0}$	R		
	C)	$\frac{q^2}{8\pi\epsilon_0 R^2}$			D)	$\frac{q}{8\pi\epsilon_0 l}$	γ ²		
107.	The P A) B) C) D)	Poynting theore Electromagne Electromagne Electromagne States	m is a ma etic energ etic veloc etic charg	athemat gy city ge	ical sta	atement	of the conser	vation of	f.
108.	The C A) C)	Gibb's potential G = U-PV-T G = U+PV+T	is define S S	ed as	B) D)	G = U $G = U$	I-PV+TS I+ PV-TS		

- 109. The self destruction of an unstabilised transistor is known as ------.
 - A) avalanche break down B) zener break down
 - C) thermal runaway D) peak depreciation
- 110. A Si transistor has $I_{CBO} = 0.02$ A at 27°C. The leakage current doubles for every 6°C rise in temperature. Find the base current at 57°C when the emitter current is 1 mA. Given $\alpha = 0.99$
 - A) 94 A B) 9.4mA C) 9.4 A D) 0.94mA
- 111. 2's complement of a binary number is obtained by ------.
 - A) adding 1 to its 1's complement
 - B) by replacing 0s by 1 and 1s by zeros
 - C) adding 2 to its 1's complement
 - D) adding 1 to it
- 112. In Asynchronous counters, -----.
 - A) Flip flops are connected in parallel
 - B) Clock pulses are simultaneously applied to all flip flops
 - C) Flip flops are connected in series and Clock pulses are simultaneously applied to all flip flops
 - D) None of these
- 113. According to Boolean algebra AC + ABC = -----. A) AC B) ABC C) AB D) A+B
- 114. When a large step input voltage is applied to OP AMP 741, the output voltage changes from 0 to 10 V in 20 microseconds. Slew rate of the OPAMP is -----.
 A) 10 S
 B) 20 S
 C) 0.5V/S
 D) 0.5V
- 115.In an OPAMP integrator, the feedback is through -----.A)resistorB)diodeC)capacitorD)inductor
- 116.According to which statistics, the energy at absolute zero cannot be zero?A)M BB)F-DC)B-ED)All the above
- 117. Two bodies of mass m and 2m are connected by a spring constant k. The frequency of the normal mode is -
 - A) $\sqrt{3k/2m}$ B) $\sqrt{2k/3m}$
 - C) $\sqrt{k/2m}$ D) $\sqrt{k/m}$
- 118. The splitting of spectral line the presence of an electric field is called -
 - A) Zeeman effect B) Raman effect
 - C) Paschen back effect D) Stark effect

Match	h List I with List II:				
a. Nor	List I mal distribution	$\frac{\text{List II}}{1.} \frac{\text{standard deviation}}{\text{Mean}}$ 2. Mean = Variance			
b Poi	sson distribution				
c. Bin	omial distribution	3. Mean = Median = Mode			
d. Coe	efficient of variation	4. Mean > variance			
A) C)	a-4, b-2, c-1, d-3 a-3, b-2, c-4, d-1	B) D)	a-3, b-1, c-2, d-4 a-2, b-4, c-3, d-1		
The ro A) C)	otational energy levels of a line $\epsilon_j = B (J + 1)cm^{-1}$ $\epsilon_j = BJ^2(J + 1)cm^{-1}$	ear mol B) D)	ecule can be written as $\epsilon_j = BJ (J + 1)cm^{-1}$ $\epsilon_j = 2BJ (J + 1)(J + 3)cm^{-1}$		
	Match a. Nor b Poi c. Bin d. Coe A) C) The ro A) C)	Match List I with List II: <u>List I</u> a. Normal distribution b Poisson distribution c. Binomial distribution d. Coefficient of variation A) a-4, b-2, c-1, d-3 C) a-3, b-2, c-4, d-1 The rotational energy levels of a line A) $\epsilon_j = B (J + 1)cm^{-1}$ C) $\epsilon_j = BJ^2(J + 1)cm^{-1}$	Match List I with List II:List IList IList Ia. Normal distribution1.b Poisson distribution2. Mec. Binomial distribution3. Med. Coefficient of variation4. MeA)a-4, b-2, c-1, d-3B)C)a-3, b-2, c-4, d-1D)The rotational energy levels of a linear moleA) $\in_j = B(J+1)cm^{-1}$ B)C)C) $\in_j = BJ^2(J+1)cm^{-1}$ D)		