

18724

1.

120 MINUTES

	A) B) C) D)	Angular mome Lagrangian an Momentum an Density and sp	d Hami Id Impu	ltonian lse				
2.	If \overrightarrow{A}	$=\frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j}$	then A	makes an a	ngle	with the po	sitive X	axis.
		60°						
3.	A) B) C)	among the foll $\nabla \times (\nabla \times \overrightarrow{A}) = \nabla \times (\nabla \times \overrightarrow{A}) = 0$ $\nabla \times (\nabla \times \overrightarrow{A}) = 0$ $\nabla \times (\nabla \times \overrightarrow{A}) = 0$ Both B and C	$\nabla(\nabla.\overrightarrow{A})$	$+ \nabla^2 \overrightarrow{A}$	T correc	et?		
4.	If \overrightarrow{A} is A)	s solenoidal the $\nabla \cdot (\overrightarrow{A}) = 0$	n B)	$\nabla \mathbf{x} (\overrightarrow{A}) = 0$	C) ($(\overrightarrow{A}) \mid =1$	D)	$\nabla (\overrightarrow{A}) = 2\pi$
5.	Which A)	that \overrightarrow{R} is perpermitation is perpermitation. The following among the following $3 \hat{\imath} + 10 \hat{\jmath} - \hat{k}$ $6 \hat{\imath} + 20 \hat{\jmath} - \hat{k}$	owing i	s a possible reg B)	presenta $3 \hat{i} - 1$	ation of \overrightarrow{R} .	$=3\hat{i}-$	$\hat{j}-\hat{k}$.
6.	Which	among the foll	owing i	s <i>NOT</i> an eige	n value	of the matrix	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
	A)	0	B)	-1	C)	- i	D)	1
7.	Which A) B) C) D)	among the foll Diagonal elem Off diagonal e Determinant is Conjugate tran	ents are lements always	e real numbers s may be real o s zero			matrices	•
8.	If A is A)	an orthogonal 1 ±1	matrix t B)	hen the possib +1 and 0	le value C)	es of A are: -1 and 0	D)	0
9.	Given	$\left(\frac{d^2y}{dx^2}\right) + \left(\frac{dy}{dx}\right)^2$	$+ k y^3$	= 0. The degr	ree of th	nis differential	equation	n is
	A)	2	B)	1	C)	3	D)	0

Which among the following pairs *DO NOT* have the same dimensions?

	A)	S	B)	s^{-1}		C)	-s	D)	None of these
11.	Finite	Fourier cosine							
	A)	π	B)	$\frac{\pi}{2}$		C)	$\frac{\pi^2}{2}$	D)	None of these
12.	The re	esidue of $f(z)$	$=\frac{z^3}{}$	$\frac{-z^2+1}{z^3}$	at infir	nity is	·		
	A)	0	B)	-1		C)	+1	D)	2
13.		is a regular fur contour C, the					-		nin and on a
	A)	$\int_{c} f(z)dz =$	= 2π		B)	$\int_{c} f(z)$	z)dz=0		
	C)	$\int_{c} f(z)dz =$	= π		D)	$\int_{c} f(z)$	$z)dz = \frac{\pi}{2}$		
14.	Given A) C)	$(1-x^2)\frac{d^2y}{dx^2}$ Legendre's equation	quation	•	B)	Lague	This differential erre's equation iated Lauguerr		on is called
15.	indepe	I's differential endent and dependent $y = 0$	endent v	variable	S		, where $x = 0$		
16.		polynomial nic oscillator Legendre's Hermite's	s are us	ed for s	olving t B) D)	Lague			a linear
17.	the ra	are 10 contest ce is $\frac{1}{5}$ and the collity that one of $\frac{1}{5}$	probal	bility th	nat cont ants wir	testant	B wins the rance.		
18.	Which A) B) C) D)	Normal distri Poisson distri	ribution bution i bution i	is a lin s a limi s a limi	niting casting casting cas	ase of n e of Bir e of bir	n is the number ormal distribute nomial distribute nomial distribute and the media	tion whe tion who tion who	en n is large en n is large en n is large
19.	Oscilla A)	ations of a poin Unstable	t mass (could oo Stable		out a po C)	oint of Neutral	- equilib D)	orium. Both A and B

Laplace transform of the function F(t) = 1 for t defined for all positive values is, f(s) = ---- with s > 0

10.

20.	A system of 3 particles is constrained move in one dimension. No other constraints are involved. Then the phase space for the system is dimensional. A) 1 B) 3 C) 9 D) 6	
21.	A bullet fired from a gun towards a tree is embedded within the target. This is an example of A) Perfectly elastic collision B) Perfectly inelastic collision C) Conservation of kinetic energy D) None of these	
22.	Moment of inertia tensor for a rigid body is a tensor. A) rank 1 B) rank 2 C) rank 3 D) rank 9	
23.	 Which among the following statements is <i>correct</i>? A) Newton's laws are valid only in noninertial frames of references B) Inertial frames of reference is only an approximation in reality C) Noninertial frames of references are rare in real situations D) Both A and C are correct 	
24.	Lagrangian L and Hamiltonian H of a system are related through A) Fourier transformation B) Laplace's transformation C) Legendre transformation D) Henkel transformation	
25.	Which among the following statements is <i>NOT</i> correct with respect to the set of generalized coordinates q_i and conjugate momenta p_i . A) $\dot{p}_i = \frac{\partial H}{\partial q_i}$ B) $p_i = \frac{\partial L}{\partial \dot{q}_i}$ C) $\dot{q}_i = \frac{\partial L}{\partial p_i}$ D) None of	these
26.	The shortest distance between two points on a plane is a straight line. This can be proved using the concepts of the A) principle of least action B) variational principle C) principle of least time D) Hamilton's principle	
27.	Number of generalized coordinates required completely account for the rotational motion of a rigid body is A) 1 B) 2 C) 3 D) 6	
28.	Number of degrees of freedom for a mass point suspended by an extensible string a constrained to move in a plane are	
29.	A) 1 B) 2 C) 3 D) None of For a particle moving under inverse square law force, the trajectory will be a hyperb	
<i>2)</i> .	if, where E is the total energy. A) $E > 0$ B) $E = 0$ C) $E < 0$ D) None of	
30.	According to Kepler's law which of the following statements is true if T is the tipperiod of the planet and R is the semi major axis A) $R \alpha T^2$ B) $R^2 \alpha T^3$ C) $R^3 \alpha T^2$ D) $R^{1/2} \alpha T^3$	

31.	Law o A) C)	f conservation of Isotropy of spa Infinite extens	ace		B)	Homog	geneity of space	ce	
32.		er of degrees of e = -1 in the XY	plane is			e constr		tationary D)	at the point None of these
33.	The nu A)	umber of norma	l modes B)					oscillato D)	r is 4
34.	the ge	ple of least actioneralized coordinates $\Delta \int_{t1}^{t2} p_i \dot{q}_i dt$ $\delta \int_{t1}^{t2} p_i \dot{q}_i dt$	inates an	nd conji	ugate m	omenta	l .	angian, q	q_i and p_i are
35.		a among the foll cal Poisson brace $[q_i, q_j]_{q,p} = 0$	cket.				•		•
36.	conjug	ton's canonical H is the H gate momenta. $\dot{q}_i = [q_i, H]; \dot{q}_i$ $\dot{q}_i = [q_i, H];$	Iamilton	ian, q_i	and p B)	i repre ġ _i = [H	esent generali $[a_i, b_i] : \dot{p}_i = [H]$	zed coo [. p _i .]	
37.	of the	period of a simp string is 75 cm g the following so The time period The time period w Frequency of t	n. If the statement od will do will by vill not c	bob is the is The ouble e half the hange	replace RUE he original	ed by a	new one with	n mass 4	
38.	Which A) B) C) D)	n among the followed Newton's equal Lagrange's equal Maxwell' equal None of these	ation of uations of	motion		ariant u	inder Lorentz	Transfor	mation?
39.	person respec	ck in a space shall in the space shall to an earth be as seen by an analysis of the seconds as seconds as second second	nip. If the bound co observer	ne space	e ship is station,	s movin what is station' 1.005 s	ng with a speed s the interval	d of 3 x	10^7 m/s with

40.	Rest m A)	nass energy of a 8.2 x 10 ⁻¹⁴ J	an electron is B) 5.1 e	 V		1.02 eV	D)	6.623 x10 ⁻³⁴ J		
41.	Diffrac A) B) C) D)	Electromagne Photon theory Particle pictur None of these	etic theory re of electron		-					
42.		omagnetic radi ength 3000 Å. 3.2 eV 9.93 x 10 ⁻¹⁹ e	Maximum kii	-	rgy of t 9.93 e	he electron e				
43.		on-relativistic quoes not deper energy eigenvexpectation va position proba	nd on time exp values are alw alues of dyna ability will ex	olicitly thays discrumical vaplicitly d	nen rete riables lepend o	are time indepon time		of a potential		
44.		ψ should be single valued and finite First derivative of ψ should be single valued								
45.	Dynan equation A) C)				Vibra	cannot be tion of a diate particle emit	omic mo			
46.		B) Probability of finding the particle in its ground state is maximum at the centre C) Momentum eigenvalue corresponding to ground state is not zero.								
47.	For a t A) B) C) D)	Only the grou All energy eig All energy sta None of these	and state is not genstates exce ates are degen	n degene pt the gr	rate	•		tatements is TRUE.		

C) Both ρ and j are scalars D) Both ρ and j are vectors 49. For a wave packet, $\frac{d < P >}{dt} =$. Here P and V represent linear mom	
and potential energy	entum
A) $-\langle \nabla V \rangle$ B) $\langle \nabla V \rangle$ C) $-\frac{\partial V}{\partial t}$ D) $\langle V \rangle$	>
 In wave mechanics, dynamical variables are represented by A) Unitary operators B) Self adjoint operators C) Symmetric operators D) Skew Hermition operators 	
 For a free quantum particle which among the following statements is NOT TRUE A) Energy eigenfunctions are momentum eigenfunctions also B) Energy eigenfunctions are box normalizable C) Heisenberg's uncertaintly principle is obeyed D) Energy eigenvalues are discrete. 	E
52. If x and p_y represents the x component of position and y component of linear momentum respectively, then (Square bracket represents commutator open	erator).
A) $[x, p_y] = i h$ B) $[x, p_y] = -i h$ C) $[x, p_y] = h$ D) $[x, p_y]$	[0] = 0
Which among the commutation relations is <i>TRUE</i> for the operators corresponding Cartesian components of angular momentum A) [Lx, Ly] = - iħ B) [Lx, Lz] = iħ C) [Lx, Ly] = 0 D) [Ly, Lx] = - iħLz	g to
54. If l and j represents quantum numbers associated with the orbital angular momenta \hat{J}^2 , then which of the following state $TRUE$.	
A) $l = 0, 1, 2, 3, \dots$ B) $j = 0, 1, 2, 3, \dots$ C) $l = 0, 1/2, 1, 3/2, 2, \dots$ D) $j = 0, 1/2, 3/2, 5/2, \dots$	
 Clebsch Gordon coefficients are associated with	
Pauli's spin matrices can be used in the case of A) electron only B) any particle with spin = ½ C) photons D) any particle with spin = 1	

57.		ground state of mental value the Time independent Time dependent Variational properties the	han othendent pertent	er appro erturbati urbatior	ximate on theo	method ry		is	closer to the	
58.	The WA)	/KB method is Ground state First excited	of atom	ıs	B)	Groun	ger equation for and state and First y excited states	st excit	ed state of atoms	
59.	Fermi A) B) C) D)	's Goldon rule From one lev From one lev From one end None of these	el to an el to a c ergy bar	other lequasicor	vel itinuum	of state	es			
60.	Which A) B) C) D)	ch among the following statements is <i>NOT</i> true? Wavefunction representing an electron confined in a square potential well is always symmetric with respect to the centre of the well Wavefunctions representing two electrons is antisymmetric with respect to exchange operation Wavefunction representing two alpha particles is symmetric with respect to exchange operation Wavefunction representing three electrons is antisymmetric with respect to exchange operation.								
61.		hydrostatic sys he equilibrium Internal energ Helmholtz fro	state ha 3y	ıs minin		 Entha	ire and number lpy s free energy	of mol	es are fixed,	
62.	At lov	ver temperature	e the lat	tice spe	cific he	at varie	s as:			
	A)	T^3	B)	$\frac{1}{T^3}$		C)	T	D)	$\frac{1}{T}$	
63.	The un A)	nit of chemical mol	potenti B)	al is mol ⁻¹		C)	joules mol ⁻¹	D)	joules	
64.	The hy		orrespor	nding to	a quan	tum stat	te in a 6N dime	nsional	phase space	
	A)	h^{N}	B)	h^{3N}		C)	h ³	D)	None of these	
65.	 Microcanonical ensemble can be used for studying a system A) Only if energy and number of particles are not changing B) Only if temperature is not changing and known C) Only if entropy is not changing and known D) Only if volume is kept constant 									

66.		solated system in equilibrium sible microstates". This sta		will be found with equal probability in each of its ement is called								
	A) C)	, , ,										
67.		xtensive thermodynamic var 1 is	riable use	ed for de	escribing the s	tate of a	paramagnet	ic				
	A) C)	Magnetic field intensity Relative permeability	B) D)	_	netic moment tive permittivit	ty						
68.	Triple A)	point of water is273 K B) 273	3.16 K	C)	273.25 K	D)	273.35 K	_				
69.		law states that the total electric flux linked with a closed surface is $1/\epsilon_0$ times										
		arge enclosed by it. Coulomb's	B)	Poiss	on's							
	A) C)	Gauss'	D)		ere's circuital							
70.	Which	n among the following state	ments is	NOT co	orrect?							
	A)	Displacement current cana										
	B)	Magnitude of displacement vect		t is equa	al to the time ra	ate of cha	ange of					
	C)	Displacement current in a		nductor	is negligibly s	mall cor	npared to					
		conduction current										
	D)	Displacement current can	have a fi	nite val	ue in vacuum							
71.	The direction of Poynting's vector is											
	A)	parallel to the direction of electric field										
	B)	parallel to the direction of	magneti	c field								
	C)	perpendicular to the plane	containi	ng the e	electric and ma	ignetic fi	elds					
	D)	None of these										
72.	Loren	tz gauge concept is	the coor	rdinate s	system used.							
	A)	dependent on	B)		pendent of							
	C)	may or may not depend or	n D)	none	of these							
73.		- mode cannot propagate th	_		_		TO C					
	A)	TE_{00} B) TE_1	10	C)	TE_{01}	D)	TE_{11}					
74.		case of electromagnetic i			g on ultra thi	n metall	ic foil, whi	ch				
	_	g the following statements is			11							
	A)	The intensity of transmitte				1						
	B)	Waves which are strongly										
	C) D)	Transmitted and reflected Reflectivity is closer to ur					es for lower					
	D)	frequencies	11ty 101 11.	ignor w	avolongins and	i decreas	53 101 10 WCI					

77.	In the case of normal dispersion of electromagnetic radiation,
	A) refractive index decreases as frequency increases
	B) refractive index increases as frequency increases
	C) refractive index does not change as frequency changes
	D) rate of change of refractive index with frequency does not follow a general pattern
78.	Electromagnetic radiation is passing through a solid medium with complex refractive
	index, $n = n_1 + i n_2$. Which among the following statements is true?
	A) n_1 is related to the absorption of radiation by the medium
	B) $(n_1^2 + n_2^2)^{1/2}$ is related to the transmitted intensity
	C) n ₂ is related to the transmitted part
	D) n_2 is related to the absorption of radiation by the medium
79.	Which among the following statements is TRUE for the propagation of electromagnetic
	waves through a wave guide?
	A) TEM waves can propagate along the axis
	B) TM_{01} mode exist
	C) Guide velocity can sometimes be greater than c
	D) Phase velocity is always greater than c
80.	State of an atom is given as ² P _{3/2} , then
	A) $L = 1, S = 1/2, J = 3/2$ B) $L = 0, S = 2, J = 2$
	C) $L = 1, S = 3/2, L = 3/2$ D) $L = 0, S = 1, J = 1$
81.	Which among the following is <i>NOT</i> a correct rule for optical transition of electrons in atoms?
	A) Transition for which $\Delta L = \Delta J$ leads to intense spectral lines
	B) Transitions for which ΔL and ΔJ are positive leads to spectral lines that are
	less intense than those for which ΔL and ΔJ are negative
	C) Transitions for which ΔL and ΔJ have opposite signs leads to weak spectral lines
	D) Only those transitions for which $\Delta L = \pm 1$ and $\Delta J = \pm 1$, 0 are allowed.
82.	Hyperfine structure of electronic spectra of atoms originates due to
	A) angular momentum of nucleus
	B) mass of nucleus
	C) charge of nucleus
	D) spin of electrons
	· · · · ·
	Q

Vector potential due to an oscillating dipole at a point r distant from the centre of the

When electromagnetic waves goes across a boundary between two mediums which

C)

Normal component of electric displacement, D is continuous across the boundary

Normal component of magnetic induction, B is discontinuous across the boundary

Tangential component of magnetic intensity, H is continuous across the boundary

Tangential component of electric field, E is continuous across the boundary

D)

dipole is ----- if \dot{p} is the time rate of change of dipole moment.

B)

among the following statements is TRUE.

75.

76.

A)

B)

C)

D)

83.	pole pieces of a strong electromagnet. If the magnetic field is switched on and viewed with the help of a spectrograph of very high resolving power in a direction perpendicular to the direction of the magnetic field line will be observed.								
	A)	2	B)	3	_	C)	4	D)	6
84.		tion from anor al magnetic fie	eld is cal					ct on inc	creasing the
	A) C)	Paschen-Back Faraday rotat			B) D)	Stark (Fermi	effect resonance		
85.	Which	n among the fol	llowing	is an ex	ample o	of a sph	erical top mole	cule?	
	A)	H_2O	B)	CO_2	-	C)	CH ₄	C)	C_6H_6
86.	For lin	near molecules,				-			is:
	A)	$\Delta J = 0, \pm 2$	B)	$\Delta J = 0$	0, ± 1	C)	$\Delta J = 0, \pm 3$	D)	$\Delta J = 0$
87.		er of fundamer			of a non			_	
	A)	3N	B)	3N-3		C)	3N-5	D)	3N-6
88.	The rule of mutual exclusion of IR and Raman active mode of vibrations is relevant in the case of								
	A)	CO	B)	CO_2		C)	CH ₃ F	D)	H_2O
89.	ESR s	pectra are reco	rded in		region	of the e	lectromagnetic	spectru	ım.
	A)	visible	B)	infrare	ed	C)	microwave	D)	radio frequency
90.		among the fol	llowing	is an ex					
	A) C)	Ruby laser Dye laser			B) D)	He-Ne None	e laser of these		
01	ŕ	-	o tha Ei	ingtoin's	,			ulotad a	mission and
91.		B_{21} and A_{21} arneous emission				zienis at	osorption, stim	uiated e	mission and
	A)	$A_{21} = B_{12}$	B)	$A_{21} = 1$	B_{21}	C)	$B_{12} = B_{21}$	D)	$B_{12} = A_{21} + B_{21}$
92.		nd 7N15 are exa	-			G)			
	A)	isotopes	B)	isotor	nes	C)	isobars	D)	mirror nuclei
93.		he binding end of proton is 1.0						pha part	ticle is 4.001506 u.
	A)	28.29 eV	B)	28.29	keV	C)	45.32 x10 ⁻¹³ .	J D)	2.829 MeV
94.	Strong	g forces of inter	raction a	are thro	ugh the	exchan	ge of		
	A)	protons	B)	neutro	ons	C)	pi-mesons	D)	neutrino

95.	According to Liquid drop model of nucleus, A) Nucleus is spherical in shape											
	B)	Density of n	ucleus i	ncreases	with its	s volum	ne					
	C)	Each nucleo	n interac	ets with	all othe	r nucleo	ons of the nucle	eus				
	D)	Binding ene	rgy is in	versely	proporti	ional to	the total numb	er of n	ucleons			
96.	Amor A)	ng α – particles α - particles	s, β- par	ticles an B)	d γ-rays β-part		ation power is a	naximu	m for			
	C)	γ-rays					eles and β-parti	cles				
						_						
97.	When a $_{90}\text{Th}^{234}$ nucleus emits a β particle onenucleus is formed.											
	A)	90Th^{233}	B)	91Pa ²²	34	C)	$_{91}Pa^{233}$	D)	$92U^{235}$			
98.					tical wh		multiplication t					
	A)	> 0	B)	1		C)	>1	D)	100			
99.	Whic	h among the fo	ollowing	s is <i>NOT</i>	used as	a mod	erator in a nuc	lear rea	ctor?			
	A)	_	_				Berylium		Boron			
100	Whio	h amana tha f	allawina	hag a gr	nin a = 3	2/22						
100.		h among the fo μ-neutrino					Σ-hyperon	D)	Ω-hypero	n		
101.	Parity	y of the wavefi	ınction i	s conser	ved in -							
101.	Parity of the wavefunction is conserved in A) only in strong interaction											
	B)	B) only in electromagnetic interaction										
	C)	both strong		_	etic inte	eraction	ıs					
	D)	only in weal	k interac	tion								
102.	In quark model, considering both quarks and antiquarks, the quantum number											
		ur" can have -			alues.		-	•				
	A)	4	B)	3		C)	2	D)	6			
103.	NaC1	crystallises w	ith	svmr	netrv.							
	A)	simple cubic		- 5	B)	body	centred cubic					
	C)	face centred	cubic		D)	hexag	gonal					
104.	Recir	orocal lattice o	f a body	centred	cubic la	attice is	<u> </u>					
	A)	body centred	-		B)		entred cubic la	ittice				
	C)	simple cubic	e lattice		D)	tetrag	onal lattice					
105.	A giv	ven plane inte	rcepts th	ne crysta	al axes	$ec{a}$, $ec{b}$ an	and \vec{c} at 2a, 3b	and 1c	respectivel	y.		
							er indices for t					
	A)	(2 3 1)	B)	(1 3 2)	C)	(3 2 6)	D)	(2 3 6)			
106.	Arrar	nge the three co	ubic latti	ices in th	ne increa	asing o	rder of packing	factor				
	A)	SC, FCC, B			B)		BCC, FCC					
	C)	BCC, FCC,	SC		D)	FCC,	BCC, SC					

107.	The th A) B) C) D)		ductivit ductivit ductivit	y of A v y of A v y of A v	will be will be will be	less than equal to greater t	n that of B that of B than that of B		n, mal coductivity
108.	The un A)	nit of Hall coef Vm ² Awb ⁻¹			- ¹ wb ⁻¹	C)	$V^{-1}m^3A^{-1}wb$	D)	Vm ⁻³ Awb ⁻¹
109.	Transi A) C)	ition from antif Curie temper Fermi temper	ature	gnetic si	tate to p B) D)	Curie-	netic state occ Weiss temper emperature		
110.	The pr	robability of oc 0	ecupanc B)	y of Fer	mi leve	el of a se C)	emiconductor 1	at 273 K D)	is None of these
111.	Ripple A)	e factor for half 1 and 0.5	f wave r B)			dge rect C)			1.21 and 0.48
112.		n among the fo I-V charactere Zener diode Field Effect	stics		nductor B) D)	Photo	_		-
113.	Which A) B) C) D)	Emitter follow	wer is a lower be wer is a	current oth volt negativ	amplifi age and e curre	ier. I current nt feedb	t are amplified	1	
114.		among the fo	_				_		GaAs
115.	Which A) B) C) D)	Closed circui Both VOC ar	voltage t curren nd ISC a	VOC is t ISC is tre nonlin	a nonli a nonli inear fu	near fur near fur nctions	or a solar cell nction of illun nction of illun of illuminatio not vary with	nination on	
116.	For m A) C)	ore reliable op 1 as high as po		of an Op	beration B) D)	0	ifier, CMRR	should b	e
117.	Which A) C)	n among the lis AND and OR OR and NOR	2	niversal	Gates? B) D)		and NAND D and NOR		

118.	If V_r is the reference voltage range of a N bit Analog to Digital converter then the resolution ΔV is							
	A)	17	B)	$\frac{V_r}{N^2}$	C)	$\frac{V_r}{2^N}$	D)	$V_r 2^N$
110	TD.	C		.1 1	•	0.1	1	

- 119. Type of error caused due to the carelessness or ignorance of the person doing an experiment is ------.
 - A) random error B) systematic error
 - C) least square error D) gross error
- 120. Which among the following statements is *TRUE?*
 - A) Precision is a necessary condition for accuracy
 - B) Accuracy is a necessary condition for precision
 - C) Accuracy and Precision are one and the same
 - D) Precision is a sufficient condition for accuracy