A

17824

120 MINUTES

1.	Given a vector $\vec{A} = 3\hat{\iota} + \hat{\iota}$	$4\hat{j} + 2\hat{k}$, then	a unit	vector in the	directio	on of \vec{A} is
	A) $2\hat{\imath} + 3\hat{\jmath} + 4\hat{k}$		B)	$\frac{\hat{\iota} + \hat{j} + \hat{k}}{\sqrt{20}}$		
	$C) \qquad 3i + 2i + 4\hat{k}$		D)	$\frac{\sqrt{29}}{3\hat{\iota} + 4\hat{j} + 2\hat{k}}$		
	$C_{j} = J_{i} + Z_{j} + 4K$		D)	$\sqrt{29}$		
2.	A force $\vec{F} = (5\hat{\imath} + 2\hat{\jmath})N$	acts about the or	igin at th	ne point (2, 2) m.	The mo	ment of the force is
	A) 0 B)	$10\hat{\imath} + 2\hat{\jmath}$	C)	$-6\hat{k}$ Nm	D)	$6\hat{k}$ Nm
3.	The square roots of 'i'	are				
	A) $\pm \frac{1}{2}(1+i)$		B)	(1 - i)		
	C) $+(1+i)$		D)	$+\frac{1}{i}(1+i)$		
			2)	$=\sqrt{2}$ (1 · · · ·)		
4.	Beta ($\beta(m, n)$) and gamm	na ($\Gamma(m)$) func	tions a	re related by		
	A) $\beta(m,n) = \frac{\Gamma(m+n)}{mn}$		B)	$\beta(m,n) = \frac{\Gamma(n)}{\Gamma(n)}$	$(m)\Gamma(n)$	
	C) $\beta(m,n) = \frac{\Gamma(m)}{\Gamma(m)}$		D)	$\beta(m,n) = \Gamma$	(m) Γ(n	1)
	$\Gamma(n)$,	, , , ,		,
5.	The generating function	for Hermite poly	ynomial	s $H_n(x)$ is	(-	$(1)^n e^{x^2} \frac{d^n}{d^n} (e^{-x^2}),$
	then the value of $H_0(x)$	is	,		,	dx^n
	A) 1 B)	0	C)	x	D)	<i>x</i> ²
6	If the function $f_{r}(r)$	$= r^2$ is expanded	anded	as a Fourier se	ries in t	be interval $[\pi - \pi]$
0.	the first term of the serie	- x is expension is expense.	indea			the interval $[n, n]$,
	A) 1 B)	π	C)	$\frac{2}{2}\pi^2$	D)	$\frac{\pi^2}{2}$
	, , ,		,	3	,	3
7.	Which one of the following	g sets form a	group	under multiplic	ation?	
	A) (1, i) B)	(i, -i)	C)	(1,-1)	D)	(1, 0)
8.	Rotations of a circle abo	out an axis na	ssing tl	hrough its cen	tre and	d perpendicular to
0.	the plane of the circle wi	ll form				- Ferbeneren in
	A) An orthogonal gr	oup	B)	A unitary g	roup	
	C) Lorentz group		D)	A set only		
9.	If $z = x + iv$, which	one of the fo	ollowing	g function f(7	z) is a	analytic throughout
	the entire complex plane				,	
	A) z B)	log(z)	C)	1	D)	$\frac{1}{r^2}$
				Z		Z-

10.	Given $f(Z) = \frac{\sin Z}{Z^4}$, $f(Z)$ has a pole of order A) 3 at Z = 1 B) 3 at Z = 0 C) 4 at Z = 0 D) 2 at Z = 0
11.	The eigen values of the matrix $\begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$ are A) 3 & 2 B) 1 & 2 C) 1 & 4 D) 3 & 1
12.	Given $\vec{F} = \hat{\imath} 3xy - \hat{\jmath} y^2$. The value of the integral $\int_C \vec{F} \cdot d\vec{r}$ where C is the curve in the xy plane, $y = 2x^2$, from (0, 0) to (1, 2) is A) $\frac{7}{6}$ B) -7 C) $\frac{6}{7}$ D) $-\frac{7}{6}$
13.	Which one of the following is not a tensor? A) A_j^i B) A_{jjk}^i C) A_{jk}^i D) A_{ijk}^i
14.	The dielectric susceptibility of an anisotropic medium isA)A scalar quantityB)A second rank tensorC)A vector quantityD)An axial vector
15.	Cauchy - Riemann conditions for the analyticity of a complex function f(z) = u(x, y) + i v(x, y) are A) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ B) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$ C) $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}, \frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y}$ D) $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial x} = -\frac{\partial v}{\partial x}$
16.	A linear symmetric triatomic molecule makes longitudinal free oscillations. Possible number of normal modes of oscillations are A) Three B) Four C) Two D) One
17.	A proton, a deuteron and an alpha particle having the same kinetic energy are moving in circular trajectories in a uniform magnetic field. If r_p , r_d and r_{α} denote respectively the radii of the trajectories of these particles, then A) $r_{\alpha} = r_p > r_d$ B) $r_{\alpha} = r_p < r_d$ C) $r_{\alpha} > r_p > r_d$ D) $r_{\alpha} = r_p = r_d$
18.	A stationary body explodes into two, each of rest mass 2.0 kg, that move apart at 0.6c relative to the original body. The mass of the original body is A) 2.5 kg B) 2.5 g C) 5 kg D) 0.5 kg
19.	A particle is placed in a potential given by $V(x) = \frac{1}{2}kx^2 - \frac{1}{4}gx^4$, where k and g are positive constants with $g < k$. Then, A) $x = 0$ is a point of stable equilibrium B) $x = \sqrt{\frac{k}{g}}$ and $x = -\sqrt{\frac{k}{g}}$ are points of stable equilibrium C) $x = \sqrt{\frac{k}{g}}$ alone is a point of stable equilibrium D) $x = k/g$ and $x = -k/g$ are points of stable equilibrium

20.	The dimension of total scattering cross section	is that	of
-----	---	---------	----

A) Volume B)	Length
--------------	--------

C) Dimensionless D) Area

21. The necessary and sufficient condition that the work done be independent of the physical path taken by the particle is that the force \vec{F} can be expressed as

- A) $\vec{F} = -\vec{\nabla}V(r)$ B) $\vec{F} = -V(r)$
- C) $\vec{F} = -\vec{\nabla} \cdot V(r)$ D) $\vec{F} = -\vec{\nabla} \cdot V(r)$

22. If the Lagrangian of a system is $L = \frac{1}{2}m(\dot{r}^2 + r\dot{\vartheta}^2 + \dot{z}^2)$, then

- A) r alone is a cyclic coordinate
- B) z alone is a cyclic coordinate
- C) ϑ , z and r are cyclic coordinates
- D) ϑ and z are cyclic coordinates
- 23. Group A contains some important discoveries in Physics. Group B contains the names of the Scientists who discovered. Match the discoveries with the names of the Scientists.
 - Group A
 - a) Quantum physics

- Group B (i) Wilhelm Roentgen
- (ii) C V Raman
- b) X- raysc) Quantum theory of photoelectric effect
- c) Quantum theory of photoelectric effect (iii) Max Planckd) Change in the wavelength of radiation on scattering. (iv) A. Einstein
- A) $a \rightarrow iii, b \rightarrow i, c \rightarrow iv, d \rightarrow ii$
- B) $a \rightarrow iv, b \rightarrow i, c \rightarrow ii, d \rightarrow iii$
- C) $a \rightarrow ii, b \rightarrow iii, c \rightarrow iv, d \rightarrow i$
- D) $a \rightarrow i, b \rightarrow ii, c \rightarrow iv, d \rightarrow iii$
- 24. A cylinder of height 2.5 m is filled completely with water. A hole is made at the bottom of the cylinder in such a way that water is coming out of it. What is the velocity of water coming out of the cylinder?
 - A) 6.4 m/s B) 9.8 m/s
 -) 9.8 m/s C) 2.5 m/s D) 7 m/s
- 25. The Lagrangian of a system in two dimensions is given by $L = \frac{1}{2}m\dot{x}^2 m\dot{x}\dot{y}$, then the Hamiltonian of the system is
 - A) $\frac{1}{2m}p_x^2 + \frac{1}{m}p_xp_y$ C) $-\frac{1}{2m}p_y^2 - \frac{1}{m}p_xp_y$ B) $\frac{1}{2m}p_x^2 - \frac{1}{m}p_xp_y$ D) $-\frac{1}{2m}p_x^2 - \frac{1}{m}p_xp_y$

26. A particle of unit mass is moving under the influence of an attractive inverse square law of force directed towards a fixed point. The Lagrangian describing the motion is,

A)
$$L = \frac{1}{2} (\dot{r}^2 + r^2 \dot{\theta}^2) + \frac{k}{r}$$

B) $L = \frac{1}{2} (\dot{r}^2 + r^2 \dot{\theta}^2) - \frac{k}{r}$
C) $L = \frac{1}{2} (\dot{r}^2 + r^2 \dot{\theta}^2)$
D) $L = \frac{1}{2} (r^2 \dot{\theta}^2) + \frac{k}{r}$

- 27. The Poisson bracket of two dynamical variables which are constants of motion is A) Zero B) 1
 - C) Not a constant of motion D) A constant of motion
- 28. Choose the correct statement
 - A) Finite rotations of a rigid body commute
 - B) A rigid body has only three degrees of freedom
 - C) Infinitesimal rotations of a rigid body do not commute
 - D) Infinitesimal rotations of a rigid body commute
- 29. L is the orbital angular momentum vector then the Poisson bracket $[L_i, L_j]$ is A) $\hbar L_k$ B) $\epsilon_{ijk}L_k$ C) $i\epsilon_{ijk}L_k$ D) L_k
- 30. The Hamilton's equations of motion are,

31. Lorentz gauge implies A) $\vec{\nabla} \times \vec{A} + \frac{\partial \varphi}{\partial t} = 0$

C)
$$\vec{\nabla} \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} = 0$$
 D) $\vec{\nabla} \cdot \vec{A} = 0$

32. The frequency of precession of a charged particle of mass m and charge e in a uniform magnetic field of magnetic induction \vec{B} is

B) $\vec{\nabla} \times \vec{A} = 0$

- A) $\omega = \frac{eB}{2m}$ C) $\omega = \frac{eB}{m}$ B) $\omega = \frac{B}{2m}$ D) $\omega = eB$
- 33. Consider a parallel plate condenser. A potential difference V is applied across the plates and disconnected. Now a dielectric slab of uniform thickness is placed in between the plates of the parallel plate condenser, then
 - A) The value of the capacitance increases
 - B) The value of the capacitance decreases
 - C) The value of the capacitance remains unaltered
 - D) The charge on the condenser decreases.
- 34. What is the magnitude of the electrical field strength E such that an electron placed in the field would experience an electrical force equal to its weight? (charge of electron: $e = 1.6 \times 10^{-19}$ coulomb)
 - $\begin{array}{cccc} \text{in the field would experience an electrical force equal to electron: } e = 1.6 \times 10^{-19} \text{ coulomb}) \\ \text{A)} & 5.6 \text{ x } 10^{-11} \text{ N/ C} & \text{B)} & 5.6 \text{ N/ C} \\ \text{C)} & 5.6 \text{ x } 10^{11} \text{ N/ C} & \text{D}) & 2.8 \text{ x } 10^{-11} \text{ N/ C} \end{array}$
- 35. Brewster's Law refers to
 - A) Polarization by scatteringC) Polarization by reflection
- B) Polarization by refraction
- D) Polarization by double refraction

- 36. Consider a rectangular wave guide with sides a and b such that $a \ge b$, then value of the lowest cutoff frequency is given by
 - A) $\omega_{10} = \frac{c}{b}$ C) $\omega_{10} = \frac{c\pi}{a}$ B) $\omega_{10} = \frac{a}{c}$ D) $\omega_{10} = \frac{c\pi}{b}$
- 37. A left circularly polarized beam ($\lambda_0 = 5893 \, \dot{A}$) is incident on a calcite crystal (with its optic axis cut parallel to the surface) of thickness 0.005141 mm. If the electric field of the incident beam at x = 0 is $E_y = \frac{E_0}{\sqrt{2}} \sin \omega t$ and $E_z = \frac{E_0}{\sqrt{2}} \cos \omega t$, then the state of polarization of the emergent beam is (the refractive indices of the ordinary and extraordinary rays are respectively 1.65836 and 1.48641)
 - A) $E_y = \frac{E_0}{\sqrt{2}} \sin \omega t$, $E_z = \frac{E_0}{\sqrt{2}} \cos \omega t$ B) $E_y = \frac{E_0}{\sqrt{2}} \cos \omega t$, $E_z = \frac{E_0}{\sqrt{2}} \sin \omega t$ C) $E_y = \frac{E_0}{\sqrt{2}} \sin \omega t$, $E_z = -\frac{E_0}{\sqrt{2}} \cos \omega t$ D) $E_y = -\frac{E_0}{\sqrt{2}} \sin \omega t$, $E_z = \frac{E_0}{\sqrt{2}} \cos \omega t$
- 38. For a Fraunhofer diffraction pattern produced by a circular aperture of radius 0.02 cm, the radius of the first dark ring is 3.6×10^{-2} cm. Find the wavelength of light if the aperture is kept at the focal plane of a convex lens of focal length 20 cm.
 - A) 3×10^{-5} cm B) 6×10^{-5} cm C) 7.2×10^{-5} cm D) 5×10^{-4} cm
- 39. In the Michelson interferometer arrangement, if one of the mirrors is moved by a finite distance, 250 fringes cross the field of view. If the wavelength of the light used is 6400 Å, then the mirror is moved through a distance
 - A) 0.08 mm B) 0.04 mm C) 0.08 cm D) 0.02 mm
- 40. Choose the correct statement
 - A) Ampere's law is valid for dynamic current.
 - B) Displacement current is introduced to modify Faraday's law.
 - C) Displacement current modifies Coulomb's law.
 - D) Ampere's law is valid only for steady current

41. The expression for skin depth is given by $\delta = \left(\frac{2}{\omega\mu\sigma}\right)^{1/2}$. For copper, $\mu = 4\pi \times 10^{-7} \text{ N/amp}^2$ and $\sigma = 5.8 \times 10^7 \text{ mhos/m}$. Then the value of the skin depth at a frequency of $\nu = 100 \text{ sec}^{-1}$ would be

- A)5.5 mB) $6.5 \times 10^{-3} \text{ cm}$ C) $5.5 \times 10^{-2} \text{ m}$ D) $6.5 \times 10^{-3} \text{ m}$
- 42. The total power radiated by an oscillating electric dipole
 - A) Depends on the relative phases of the components of the dipole moment
 - B) Is independent of the relative phases of the components of the dipole moment
 - C) Is proportional to the dipole moment
 - D) Is inversely proportional to the dipole moment

43.	In a H	Ie- Ne	laser,
-----	--------	--------	--------

- A) the lasing action is due to transitions taking place in the Ne atom
- B) the lasing action is due to transitions taking place in the He atom
- C) the Ne atoms excite He atoms by collision
- Ne atoms are excited by passing an electric discharge through the system D)
- 44. Adiabatic expansion of photon gas is determined by the equation

B) $PV^{\frac{1}{3}} = a \text{ constant}$ PV = RTA) $P V^5 = a$ constant

- $P V^3 = a$ constant D) C)
- In a canonical ensemble, a system A of fixed volume is in contact with a large 45. reservoir B. then
 - A can exchange only particles with B A)
 - A can exchange energy and particles with B B)
 - A can exchange only energy with B C)
 - A can exchange neither energy nor particles with B D)
- The heat capacity of a degenerate Fermi gas at low temperatures is proportional to 46. T^2 B) \sqrt{T} T^3 A) C) Т D)
- 47. Choose the correct statement
 - Liquid He³ obeys Bose statistics A)
 - Bose condensation is an example of quantum phase transition. B)
 - C) Liquid He^4 obeys Fermi statistics
 - D) Bose condensation is a second order phase transition

48. Wien's displacement law says that

A)	$\lambda_m T$	= a constant	B) $\frac{\lambda}{2}$	$\frac{m}{r}$ = a constant
	110		, , , , , , , , , , , , , , , , , , ,	<i>r</i>

- $\lambda_m T^3 = a \text{ constant}$ C) D) None of the above.
- 49. In a 2n dimensional phase space, the volume of a phase cell is A) ħ³ B) \hbar^{2n} C) h \hbar^n D)
- The r.m.s speed of oxygen molecule (mass of oxygen molecule is 5.31×10^{-26} kg, value 50. of Boltzmann constant is 1.38×10^{-23} J/K)) at 100° C is 461 m/s A) 0 B) C) 46.1 m/s D) 539.2 m/s
- The energy density of black body radiation at temperature T is proportional to A) T^4 B) T^2 C) T^4 D) T^{-2} 51.
- 52. The number $n(\in)$ of identical and distinguishable particles in an assembly at temperature T having an energy \in with number of states $g(\in)$ is $n(\in) = g(\in)e^{\frac{2\epsilon}{kT}}$ B) $n(\epsilon) = g(\epsilon)e^{-\frac{\epsilon}{kT}}$ A)

C)
$$n(\epsilon) = e^{\overline{kT}}$$
 D) $n(\epsilon) = g(\epsilon) \frac{\epsilon}{kT}$

- 53. Nernst's heat theorem states that
 - A) Absolute zero is attainable
 - B) Entropy of a system is finite at absolute zero
 - C) Entropy never decreases
 - D) Absolute zero is unattainable by a number of finite processes

54. Helmholtz free energy F, internal energy U, temperature T and entropy S are related by

A) F = U - TS B) F = U + TS

- C) F = US T D) F = TS
- 55. Thermal wavelength of a system is
 - A) Proportional to temperature
 - B) Inversely proportional to temperature
 - C) Proportional to square root of temperature
 - D) Inversely proportional to square root of temperature.

56. η is the efficiency of a Carnot engine working between temperatures T_1 (source temperature) and T_2 (sink temperature). If the sink temperature is made half of the temperature of the source, the efficiency of the engine will be

A) $\frac{1}{2}$ B) η C) $\frac{3}{2}\eta$ D) 2

57. A particle limited to x-axis has the wave function $\psi = ax$ between x = 0 and x = 1; $\psi = 0$ elsewhere. The probability that the particle can be found between x = 0.45 and x = 0.55 is A) $0.251a^2$ B) $2.51a^2$ C) $0.0251a^2$ D) 0.251a

- 58. The normalised wave function of a particle in a box of width L are given by $\psi_n = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$. The expectation value $\langle x \rangle$ of the position of the particle trapped in this box in the ground state is
 - A) L B) $\frac{L}{2}$ C) $\frac{L}{4}$ D) L²

59. The operator associated with the coordinate x in momentum representation is A) x B) $-i\hbar\frac{\partial}{\partial x}$ C) $i\hbar\frac{\partial}{\partial p}$ D) $-i\hbar\frac{\partial}{\partial p}$

- 60. Choose the correct statement.
 - A) Operators are time dependent in Schrodinger representation
 - B) Wave function is time dependent in Heisenberg representation.
 - C) Operators and wave functions are time dependent in Schrodinger representation
 - D) Operators and wave functions are time dependent in Interaction representation

61. Which one of the following operators is Hermitian?
A)
$$\frac{d}{dx}$$
 B) $\frac{d}{dt}$ C) $i\frac{d^2}{dx^2}$ D) $\frac{d^2}{dx^2}$

62.	The gr	round state wa	ave fun	ction of a lin	near har	monic os	cillato	or is		
	$\psi_0(x)$	$= \left(\frac{a}{\pi}\right)^{\frac{1}{4}} \exp\left(-\frac{a}{\pi}\right)^{\frac{1}{4}} \exp\left(-$	$-\frac{a}{2}x^2$).	. Then the va	lue of	(Δx^2)	in thi	s state	is	
	A)	$\frac{1}{2a}$	B)	а	C)	a^2		D)	0	
63.	Parity	of spherical h	narmoni	cs $Y_{lm}(\vartheta \varphi)$	is					
	A)	(-1) ^m	B)	$(-1)^{l+m}$	C)	(-1) ^l		D)	(-1) ^{-l}	
64.	The avradius	verage value a_o is	of 1/r	for an elec	tron in	the hydr	rogen	atom	in terms	of Bohr
	A)	a _o	B)	$\frac{a_0}{2}$	C)	$a_o{}^2$		D)	$\frac{1}{a_0}$	
65.	The ex	pectation valu	ie $\langle S_x^2 \rangle$	> in the eig	en state	of S_z	is		1	
	A)	$\frac{1}{4}$ \hbar^2	B)	0	C)	ħ		D)	$\frac{1}{2}$ ħ	
66.	The co \vec{L} and A) C)	$\begin{bmatrix} \text{Definition} & \text{re} \\ \text{I} & \text{the compone} \\ \begin{bmatrix} L_{i}, & x_j \end{bmatrix} &= 0 \\ i\hbar\epsilon_{ijk}L_k \end{bmatrix}$	lation t nts of	between the c the position c	compone coordina B) D)	ents of the te vector $i\hbar\epsilon_{ijk}x_k$ $\epsilon_{ijk}x_k$	e ang \vec{r} is	gular m given	omentum ı by	operator
67.	Choose A) B) C) D)	e the correct sta Ground state of Ground state Ground state Degeneracy of due to Stark	atement of hydro of hyd of hyd f the f effect.	ogen atom sho rogen atom v rogen atom v first excited st	ows firs will not will not ate of	t order S show sec show fir hydrogen	tark cond st or aton	effect. order \$ der Sta 1 can	Stark effec irk effect be fully	ct removed
68.	Lamb s A) B) C) D)	shift refers to ${}^{2}P_{\frac{1}{2}}$ and ${}^{2}F_{\frac{1}{2}}$ ${}^{2}P_{\frac{1}{2}}$ and ${}^{1}S_{\frac{1}{2}}$ ${}^{2}P_{\frac{1}{2}}$ and ${}^{2}S_{\frac{1}{2}}$ ${}^{2}P_{\frac{1}{2}}$ and ${}^{2}S_{\frac{1}{2}}$	splitting P_3 lines lines lines lines	g up of in hydrogen in the hydrog in the hydro in the hydro	spectra gen spea ogen spe m spectr	ı ctra ectra a				
69.	Dirac A) C)	delta function $\int f(x)\delta(x-a) = 0$	$\begin{array}{ccc} n & \delta(x) \\ a & dx \\ \infty & ev \end{array}$	(-a) satisfies = f(a) erywhere	b the real B) D)	$ \begin{array}{l} \operatorname{lation} \\ \delta(x-a) \\ \int \delta(x-a) \end{array} $) = 0 a)dx	everyw $c = 0$	here	
70.	Which A) C)	one of the f $\sigma_x \sigma_y + \sigma_y \sigma_y$ $\sigma_x^2 = \sigma_y^2 =$	relations $\sigma_y = 0$ $\sigma_z^2 = 0$	s given belov = 1	wisno B) D)	ot satisfied $\sigma_x \sigma_y = \sigma_x \sigma_y - \sigma_y$	d by $i\sigma_z$ $\sigma_y\sigma_x$	Pauli 1 = 0	matrices	

- 71. Choose the correct statement appropriate for Klein-Gordon equation:
 - A) Probability density is always positive.
 - B) Probability density is not always positive and energy can take negative values also.
 - C) It can describe particles with spin.
 - D) Probability density is always positive but energy can be negative

72. Experiments show that 13.6 eV is required to separate a hydrogen atom into an electron and a proton. The orbital radius of the electron in a hydrogen atom is (Planck constant: $h = 6.63 \times 10^{-34}$ Js, mass of electron: $m = 9.11 \times 10^{-31}$ kg, charge of electron: $e = 1.6 \times 10^{-19}$ coulomb) A) 5.3 x 10^{-11} m B) 5.3 x 10^{-11} cm

- C) 5.3×10^{-10} m D) 2.5×10^{-11} m
- 73. The longest wavelength present in the Balmer series of hydrogen atom corresponding to the H_{α} line is A) 656 mm B) 656 cm C) 656 nm D) 328 nm

74.	The	expres	ssio	n for	Bohr	magneton	is				
	A)	μ_B	=	<u>eh</u> 2m				B)	μ_B	=	$\frac{eh}{m}$
	C)	μ_B	=	<u>ет</u> 2ћ				D)	μ_B	=	<u>ећ</u> 2т

75.	In the	normal	Zeeman	effect,	а	spectral	line	of	frequency	v_0 is	split	into
	A)	3	B)) 2			C)	2	1	D)	nc	o splitting

76. The concept of spin is first introduced to explain A) Anomalous Zeeman effect B) Stern-Gerlach experiment C) Splitting up spectral lines D) Stark effect.

77. The term symbol of the first excited state of sodium is $3 {}^{2}P_{1/2}$. The possible j values are A) $j = \frac{1}{2}$ B) $j = \frac{3}{2}$

C) $j = \frac{1}{2}, j = \frac{3}{2}$ D) j = 1

78. Hyperfine splitting up of atomic spectral lines is due to the effect of

- A) Nuclear spin B) Electron spin
- C) External electric field D) External magnetic field.

79. Which one of the following molecule does not give rise to microwave spectra

- A) Hydrogen chloride B) Oxygen molecule
- C) Carbon monoxide D) Carbon oxysulphide
- 80. Mossabauer spectroscopy is due to
 - A) Transitions between energy levels within the nuclei of atoms
 - B) Transitions between electronic states of a molecule
 - C) Interactions between electrons and external magnetic field
 - D) Interactions between nuclei and external magnetic field

- 81. Choose the correct statement:
 - A) NMR spectrometers operate at infra red frequencies.
 - B) NMR spectrometers operate in the radio frequency range.
 - C) NMR spectrometers operate at optical frequencies.
 - D) ESR spectrometers operate at short radio frequency range.
- 82. Choose the correct statement:
 - A) Frequency of fluorescence radiation is lower than that of the absorbed radiation
 - B) Frequency of fluorescence radiation is higher than that of the absorbed radiation
 - C) The frequency of fluorescence radiation is same as that of the absorbed radiation
 - D) In fluorescence, the molecule gives up some of its rotational energy in collision with other molecules.
- 83. In CO molecule, the $j = 0 \rightarrow j = 1$ absorption takes place at a frequency of 1.15×10^{11} Hz. The moment of inertia of the molecule is
 - A) $1.46 \times 10^{-46} \text{ gm.m}^2$ B) $1.46 \times 10^{-46} \text{ kg/m}^2$
 - C) The data given is insufficient D) $1.46 \times 10^{-46} \text{ kg.m}^2$
- 84. Group A contains some important discoveries in Physics. Group B contains the years of these discoveries. Match the discoveries with the year of discoveries .

Group A	Group B
a) Nuclear Fission	(i) 1957
b) Semiconductor transistor	(ii) 1925
c) BCS theory	(iii) 1939
d) Electron spin	(iv) 1947
A) $a \rightarrow ii, b \rightarrow iii, c \rightarrow iv, d \rightarrow i$	B) $a \rightarrow ii, b \rightarrow i, c \rightarrow iv, d \rightarrow iii$
C) $a \rightarrow iii, b \rightarrow iv, c \rightarrow i, d \rightarrow ii$	D) $a \rightarrow iv, b \rightarrow iii, c \rightarrow ii, d \rightarrow i$
Which one of the sample can occur in	both crystalline and amorphus forms

- A) Boron trioxide B) Gallium arsenide
 - C) Lead sulphide D) Sodium chloride

86. The Fermi energy of sodium is 3.2 eV. The mass of electron is 9.11×10^{-31} kg. The Fermi velocity of sodium is A) 1.57×10^6 cm/s B) 1.07×10^6 m/s

- C) $0.57 \times 10^6 \text{ m/s}$ D) $0.57 \times 10^6 \text{ cm/s}$
- 87. Weidemann-Franz Law states that

85.

- A) The ratio of thermal and electrical conductivities is the same for all metals and is a function of temperature.
- B) The ratio between thermal and electrical conductivities is the same for all metals and is a function of square of the temperature.
- C) The ratio between thermal and electrical conductivities is a constant
- D) None of the statement given above is correct.

88. A dc voltage is applied across the Josephson junction, thenA) a dc current is produced across the junction							1			
	B) an oscillating current with frequency $\omega = \frac{2eV}{t}$ is produced across the junction									
	C) D)	an oscillatin No current i	g curre s produc	nt with freque ced across the	ency ω junctio	$= \frac{e^{n}}{\hbar}$ is propon.	oduced a	cross the ju	nction	
89.	The s	space lattice o	of diam	ond is						
	A)	SC	B)	fcc	C)	bcc	D)	hcp		
90.	The A)	Meissner effe non zero	ect says B)	that magneti $4\pi M$	ic field C)	inside a bui zero	lk superc D)	onductor is, curlÂ		
91.	Energ	gy gap in a s	upercor	ductor is caus	sed by	interacti	on			
	A)	Electron-latt	tice		B)	Electron-	phonon- p	hoton		
	C)	Electron-pho	oton		D)	Electron- j	phonon -	electron		
92.	A co	lour centre in	a crysta	l is a lattice de	fect that	-				
	A)	Absorbs vis	sible lig	ht	B)	Emits visi	ible light			
	C)	Absorbs inf	ra red	light	D)	Scatters	visible lig	ght.		
93.	At lo A) B) C) D)	w temperatures Paramagneti Paramagneti Constant par Diamagnetic	s atoms ic suscej ic suscej ramagne c suscep	with permanen ptibility inverse ptibility propor etic susceptibili tibility inverse	nt magr ely prop tional to ity ly propo	netic moment ortional to te temperature ortional to te	t μ have mperature e T emperatur	a e T e T		
94.	The r 8.48 betwo m =	resistivity of co x 10^{28} m ⁻³ an een collisions 9.11×10^{-31} kg	opper and the of free g, charge	t 20° C is ρ Fermi velocities electrons in ge of electron:	= 1.72 x ty 1.57 copper = 1.	$x 10^{-8} \Omega m.$ If x 10 ⁶ m/s, at 20 ⁰ C is 6 × 10 ⁻¹⁹ cou	the free then th s, (mass lomb)	e electron d e mean fre of electron:	ensity is ee path	
	A)	3.83 nm	B)	3.83 mm	C)	38.3 mm	D)	38.3 nm		
95.	Grou respo respo	p A contain onsible for thonsible for the	ns conc nem. M n.	epts/theories atch the conce	in phys epts/theo	sics and Grand G	roup B e name	names of s s of the s	scientists scientists	
		Grou	ıp A			Group B				
		a) meson t	heory c	of Nuclear for	ce	1) Pauli ii) Game				
		c) neutrino	hypoth	esis		iii) Yuka	wa			
		d) theory of	of alpha	decay		iv) Gell-	Mann			
	A)	a→ ii h→	i. c→	iv. d→ iii	B)	a → iv. h)→ iii.c	\rightarrow ii. d \rightarrow i		
	C)	$a \rightarrow iii, b \rightarrow$	iv, c -	\rightarrow i, d \rightarrow ii	/ D)	$a \rightarrow ii, b$	\rightarrow iv, c -	\rightarrow iii, $d \rightarrow i$		

96. One atomic mass unit when expressed in kilograms is

One	atomic mass unit when ch	spiessed in knograms	15
A)	3×10^{-27}	B)	1.66054 x 10 ⁻²⁶
C)	1.66054 x 10 ⁻²⁸	D)	1.66054 x 10 ⁻²⁷

- 97. The energy difference between the spin-up and spin-down states of a proton in a magnetic field of B = 1T is (The spin magnetic moment of proton is $8.96 \times 10^{-8} \text{ eV/T}$) A) $1.761 \times 10^{-7} \text{ MeV}$ B) $2.761 \times 10^{-7} \text{ MeV}$ C) $1.761 \times 10^{-5} \text{ eV}$ D) $1.761 \times 10^{-7} \text{ eV}$
- 98. The Coulomb energy term in the semi empirical mass formula of a nucleus ${}^{A}_{Z}X$ is proportional to

A)
$$\frac{Z^2}{A^{1/3}}$$
 B) $\frac{Z-1}{A^{1/3}}$ C) $\frac{Z^2}{A^{2/3}}$ D) $\frac{Z-1}{A^{2/3}}$

99. In 1930 Pauli proposed the existence of the particle neutrino to explain

- A) Conservation of momentum in beta decays
- B) Conservation of energy in beta decays
- C) Conservation of energy in alpha decays
- D) Conservation of energy in solar energy production.

100. Nuclear fission can be explained using A) Liquid drop model B) Shell model C) Collective model D) One particle model

101. The Geiger-Nuttall rule connecting the decay constant λ and the kinetic energy E of the α particle is given by (A and B are constants)

- A) $\lambda = AE + B$ C) $\log \lambda = AE + B$ B) $\log \lambda = A \log E + B$ D) $\lambda = A(expBE)$
- 102. The minimum energy of a photon to undergo pair production is A) 1.02 MeV B) 2.04 MeV C) 1.02 eV D) 0.5 MeV

103. Nuclear isomers possess

- A) Same atomic and mass numbers but have different radioactive properties.
- B) Same atomic and mass numbers with the same type of radioactive properties
- C) Different atomic numbers but same mass numbers with different radioactive properties.
- D) Same mass numbers with different radioactive properties.

104. In cyclotrons, the charged particle is accelerated by

- A) The magnetic field applied at right angles to the plane of the dees
- B) The electric field between the dees.
- C) The gravitational field
- D) The electric and magnetic fields.

105.	A qua A)	ark can appear 2 colours	r in B)	3 colours	C)	1 colour	D)	4 colours	
106.	Media A)	tor of strong quarks	interact B)	ion is photons	C)	gluons	D)	w bosons	
107.	Hubbl A) B) C) D)	e Law states th Constant spe With constan Speeds propo Speeds inver	hat gal ed nt accele ortional sely pro	axies are moveration to the distance to the distance	ving aw ces of t the dist	ay from us w the galaxies fro ances of the g	ith om us alaxies	from us	
108.	Chand A) B) C) D)	lrasekhar limit Refers to th Refers to th Refers to th Refers to th	e lowe e lowe e highe e highe	est mass of st est mass of st est mass of st est mass of st	ars whi ars whi ars whi ars whi	ch can form a ch can form a ch can form a ch can form a	a white a neutr a neutr a white	dwarf ron star ron star e dwarf	
109.	In a m A) C)	icroprocessor, Address bus Address bus a	which b and data	ous is bidirection	onal? B) D)	Data bus Address bus a	and con	trol bus	
110.	Negati A) C)	ive feedback in Increase its ga Decrease its c	n an am ain output ir	plifier always l npedance	helps to B) D)	Stabilize its g Control its ou	ain tput		
111.	Zener A) C)	diode is main Voltage regu Voltage amp	nly used lation olification	d for on	B) D)	Current ampl Current regul	lificatio lation	'n	
112.	An an freque A)	mplifier has ency of 0.2MH 0.5 V	a slew Iz, the B)	rate given maximum am 3.98 V	by the plitude C)	manufacturer of the undis 0.796 V	as 5V torted D)	V/µs. At a sig sine-wave is 5V	gnal
113.	 The role of ionosphere in communication purposes is that A) Visible light gets reflected from the ionosphere layers B) Microwaves get reflected from the ionosphere C) Radio waves get reflected from the ionosphere layers D) It does not play any particular role 								
114.	An Ll materi	ED is construction is construction in the construction of the cons	cted fr ergy ga	om a pn jund p is 1.9 eV. T	ction ba The way	used on a certa relength of the	ain sen e emitte	niconducting ed light is	

A) 653 m B) 6530 nm C) 653 A D) 653 nm.

115. The ripple factor of a rectifier is

A)
$$\gamma = 2\sqrt{\left(\frac{l_m}{l_{dc}}\right) - 1}$$

B) $\gamma = \sqrt{\left(\frac{l_{rms}}{l_{dc}}\right)^2 - 1}$
C) $\gamma = \left(\frac{l_{rms}}{l_{dc}}\right)^2$
D) $\gamma = \sqrt{\left(\frac{l_{rms}}{l_{dc}}\right)}$

116. Consider an operational amplifier with $A = 10^5$, $Z_1(s) = R_1 = 2000$ ohms and $Z_1(f) = R_f = 10000$ ohms. For non-inverting terminal, the gain is A) -10 B) 10 C) 6 D) -12

- 117. In a clamping circuit, the time constant RC of the circuit should be
 - A) Comparable with respect to the period of the input wave
 - B) Large with respect to the period of the input wave
 - C) Small with respect to the period of the input wave
 - D) Equal to the period of the input wave
- 118. The parameter that measures the performance of FET is
 - A) Transconductance B) Transresistance
 - C) Amplification factor D) Drain current
- 119. The truth table given below corresponds to

A B F 0 0 0			
0 0 0			
0 1 0			
1 0 0			
1 1 1			
A) OR B) AND C)	XOR	D)	NOR

- 120. A voltage comparator that develops a regenerative trigger is known as
 - A) Flip-flop

B) Multivibrator

C) Schmitt trigger

D) Shift register
