1. Let A, B and C be non-empty sets and let X = (A - B) - C and Y = (A - C) - (B - C). Which of the following is TRUE?

- A) $X \subset Y$

- B) X = Y C) $X \supset Y$ D) None of these

2. The distance of the plane \vec{r} . (2i + 3j - 6k) + 2 = 0 from the origin is

- A) 2

- B) 14 C) $\frac{2}{7}$ D) $-\frac{2}{7}$

3. If f(x) is differentiable in the interval (2,5) where $f(2) = \frac{1}{5}$ and $f(5) = \frac{1}{2}$, then there exist a number c, 2 < c < 5 for which f'(c) is

- A) $\frac{1}{2}$ B) $\frac{1}{5}$ C) $\frac{1}{10}$ D) 10

4. Two independent events E and F are such that $P(E \cap F) = \frac{1}{6}$ and $P(E^c \cap F^c) = \frac{1}{3}$, P(E) > P(F). Then P(E) is

- A) $\frac{1}{2}$ B) $\frac{2}{3}$ C) $\frac{1}{3}$ D) $\frac{1}{4}$

5. How many four digit even numbers have all four digits distinct?

- A) 2240
- B) 2296
- C) 2620
- D) 4536

6. Which of the following is NOT TRUE?

A) If f is differentiable at a point, then f is continuous at that point.

B) If f is differentiable at a point, then |f| is also differentiable there.

C) If |f| is differentiable at a point, then it need not be true that f is differentiable there.

D) If f is differentiable at a point, then $\frac{1}{f}$ is also differentiable at c, provided $f(c) \neq 0$.

7. Which of the following series converge?

- A) $\sum_{n=1}^{\infty} \sin n$ B) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ C) $\sum_{n=1}^{\infty} \frac{1}{n!}$ D) $\sum_{n=1}^{\infty} \log \frac{n+1}{n}$

8. The integral $\int_0^3 [x] dx$ where [x] is the greatest integer less than or equal to x is

- A) 0
- B) 1
- C) 2
- D) 3

9. Which of the following functions is NOT of bounded variation

A)
$$f(x) = x^2 + x + 1$$
 for $x \in (-1,1)$

B)
$$f(x) = tan\left(\frac{\pi x}{2}\right)$$
 for $x \in (-1,1)$

C)
$$f(x) = \sin\left(\frac{x}{2}\right)$$
 for $x \in (-\pi, \pi)$

D)
$$f(x) = \sqrt{1 - x^2}$$
 for $x \in (-1,1)$

10. Consider a function f(z) = u + iv defined on |z - i| < 1 where u and v are real valued functions of , y . Then f(z) is analytic for

$$A) u = x^2 + y^2$$

A)
$$u = x^2 + y^2$$
 C) $u = \ln(x^2 + y^2)$

B)
$$u = e^{xy}$$

B)
$$u = e^{xy}$$
 D) $u = e^{x^2 - y^2}$

11. The residue of $f(z) = \frac{e^{2z}}{(z+1)^2}$ at z = -1 is

A)
$$2e$$
 B) $\frac{2}{a}$ C) $\frac{2}{a^2}$ D) e

B)
$$\frac{2}{e}$$

C)
$$\frac{2}{e^2}$$

12. The radius of convergence of the series $\sum_{n=1}^{\infty} 2^{-n} z^{2n}$ is

B)
$$\sqrt{2}$$
 C) 2 D) ∞

13. Let (G,*) be an abelian group. Then which of the following is TRUE for G?

A)
$$g = g^{-1}$$
 for all $g \in G$

A)
$$g = g^{-1}$$
 for all $g \in G$. C) $(g * h)^2 = g^2 * h^2$ for all $g, h \in G$.

B)
$$g = g^2$$
 for all $g \in G$. D) G is of finite order

14. If $f: G \to G'$ is a homomorphism and e, e' are identity elements of G and G' respectively. Then which of the following is TRUE?

$$\mathrm{A})\,f(e)=e'$$

C)
$$f(x^n) = (f(x))^n$$

B)
$$f(x^{-1}) = (f(x))^{-1}$$

15. Which of the following statements is NOT TRUE about Integral Domain.

A) For a given prime, the ring $(Z_p, +_p, \cdot_p)$ is an Integral Domain.

B) Every field is an Integral Domain.

C) A commutative ring R with unity is an Integral Domain if and only

if
$$ab = 0$$
, $a, b \in \mathbb{R}$, $a \neq 0$ implies $= 0$.

D) Every Integral Domain is a Field.

	the subring of the ring $(M_2(\mathbb{Z}),+,.)$, where $M_2(\mathbb{Z})$ denote the set of the elements from \mathbb{Z} . Which of the following is TRUE?
A) I is an ideal of \mathbb{R} .	C) I is a right ideal but not a left ideal of $\mathbb R$.
B) <i>I</i> is a left ideal but not a	right ideal of $\mathbb R$. D) I is neither a left ideal nor a right ideal of $\mathbb R$.
17. For an ideal <i>I</i> of a ring , the mapped the following is TRUE?	ping γ : $R \to R/I$ be defined by $\gamma(a) = a + I$, $a ∈ R$. Then which of
A) $\gamma(a+b) = \gamma(a) + \gamma(a)$	(b), $\forall a, b \in R$ C) γ is a homomorphism
B) $\gamma: R \to R/I$ is onto	D) All of these
18. The polynomial $p(x) = x^3 - x - $	1 defined over \mathbb{Q} is
A) Irreducible over Q	C) Reducible over Z
B) Reducible over Q	D) reducible over N
19. $Q(\sqrt{2}, \sqrt{3})$ is the splitting field of	
A) $x^2 - 2$ B) $(x^2 -$	$(-2)(x^2-3)$ C) x^2-3 D) $(x-2)(x-3)$
20. The number of elements in the fiel	$d \frac{Z_2[x]}{\langle x^3 + x^2 + 1 \rangle}$ is
A) 2 B) 4 C) 8	D) 16
21. The rank of the matrix $\begin{pmatrix} 3 & 2 \\ -1 & 0 \\ 11 & 6 \end{pmatrix}$	$\begin{pmatrix} 5\\2\\11 \end{pmatrix}$ is
A) 0 B) 1 C) 2	D) 3
22. The system of linear equations : x	-2y + 3z = -2; $-x + y - 2z = 3$; $2x - y + 3z = 1$ has
A) Unique solution	C) Infinite solution
B) No solution	D) None of these
23. Which of the following subsets of	the vectorspace \mathbb{R}^3 over \mathbb{R} is a subspace ?
A) $W = \{(x_1, x_2, x_3) x_3 = 1\}$	C) $W = \{(x_1, x_2, x_3) x_2 > 0\}$
B) $W = \{(x_1, x_2, x_3) x_3 = 0\}$	D) None of these

24. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that T(1,2)=(2,3) and T(0,1)=(1,4). Then T(5,6) is

A) (6,-1) C) (-6,1)

B) (-1,6) D) (1,-6)

2:	5. Let	$T: \mathbb{R}^3$	\rightarrow	\mathbb{R}^3	be	a	linear	transformation	defined	by	T(x,y,z) = (x+y,y+z,z+x)	for	al
	(x,	$y,z) \in$	$\mathbb{R}^{\frac{1}{2}}$	³ .Tl	nen								

- A) Rank(T)=0 and Nullity(T)=3
- C) Rank(T)=1 and Nullity(T)=2
- B) Rank(T)=2 and Nullity(T)=1
- D) Rank(T)=3 and Nullity(T)=0

26. The integrating factor of $\frac{dy}{dx}$ + $(\tan x)y = \cos^2 x$ is

A) $\cos x$

C) $\sec x$

B) $-\cos x$

D) $-\sec x$

27. The *orthogonal* trajectory of the curve xy = c is

- A) $x^2 y^2 = k$
- C) $x^2 + v^2 = k$
- B) $2x^2 v^2 = k$
- D) None of these

28. The differential equation for variation of the amount of salt x in a tank with time t is given by $\frac{dx}{dt}$ + $\frac{x}{20} = 10$ where x is in kg and t is in minutes. Assuming there is no salt in tank initially, the time t in which the amount of salt increases to 100kg is

A) 10 ln 2

C) 20 ln 2

B) 50 ln 2

D) 100 ln 2

29. The partial differential equation of all spheres whose centre lie on the z - axis is

- A) py = qx
- C) px = qy
- B) px + qy = 0
- D) pv + qx = 0

30. The number of integer less than 200 and relatively prime to it is

- A) 98
- B) 100
- C) 101
- D) 102

31. If $a \equiv b \pmod{m}$ means a - b is a multiple of m, then which of the following is NOT TRUE?

- A) $12^{25} \equiv 2 \pmod{5}$ C) $13^{121} \equiv 2 \pmod{11}$
- B) $8^{36} \equiv 2 \pmod{6}$ D) $9^{49} \equiv 2 \pmod{7}$

32. If $a \in \mathbb{Z}$ and p is a prime not dividing a then p divides

- A) $a^{p-1} 1$
- C) $a^{p} 1$
- B) $a^{p+1} 1$
- D) $a^{p+2} 1$

- 33. Let $f: X \to Y$ be a closed bijective map between metric spaces X and Y such that Y is compact then:
 - A) X need not be compact but f is continuous
 - B) *X* is compact but *f* need not be continuous
 - C) X need not be compact and f need not be continuous
 - D) X is compact and f is continuous
- 34. Which of the following is not a topological property
 - A) Openness
- C) Compactness
- B) Closedness
- D) Boundedness
- 35. If X is a finite set then the cofinite topology on X is
 - A) Discrete
- C) Empty set
- B) Indiscrete
- D) None of these
- 36. Let H be a Hilbert space and let x, y be any two vectors in H. Then
 - A) $||x + y||^2 + ||x y||^2 = ||x||^2 + ||y||^2$
 - B) $|\langle x, y \rangle| > ||x|| ||y||$
 - C) $2(||x + y||^2 + ||x y||^2) = ||x||^2 + ||y||^2$
 - D) $x_n \to x$ and $y_n \to y$ implies $\langle x_n, y_n \rangle \to \langle x, y \rangle$
- 37. Let X be a normed linear space and x_o be a non zero vector in X. Then there exist a functional f_o in X'such that
 - A) $f_o(x_o) = x_o$ and $||f_o|| = 1$
- C) $f_o(x_o) = 1$ and $||f_o|| = 1$
- B) $f_o(x_o) = ||x_o||$ and $||f_o|| = 1$ D) $f_o(x_o) = 1$ and $||f_o|| \ge 1$
- 38. Let X and Y be a Banach space. If $f: X \to Y$ is a continuous linear transformation, then
 - A) T is closed
- B) T is open C) Range of T is finite dimensional D) None of these
- 39. Let X be a Banach algebra and $x \in X$, then the spectral radius is
 - $A) \lim_{n \to \infty} ||x^n||^{1/n}$
- C) $\lim_{n\to\infty} \left\| x^{1/n} \right\|^{1/n}$
- B) $\lim_{n\to\infty} \left\| x^{1/n} \right\|^n$
- D) $\lim_{n\to\infty} ||x^n||^n$

40.	The function $f(x) = x^2 - 2$ defined on the set of real numbers is						
	(A) injective but not s	·	(C) surjective but not	v			
	(B) neither injective n	or surjective	(D) both injective and	surjective			
41.	depression from the to	op of the tower to the b	a boat speeding away from the tower. The angle of boat is 60^{0} when the boat is $80m$ from the tower. at is the speed of the boat? (Assume that the boat is				
	(A) 20m/sec	(B) 10m/sec	(C) 18m/sec	(D) 16m/sec			
42.	7. The equation to the straight line which passes through the point $(-5,4)$ and is such that the portion of it between the axes is divided by this point in the ratio 1:2 is						
	(A) 5x + 8y = 7		(C) $5y + 8x = -20$				
	(B) $5x - 8y = -57$		(D) $5y - 8x = 60$				
43.	The equation of the hy	perbola whose vertices	,	of the directrices is $x = 4$ is			
	(A) $\frac{x^2}{45} - \frac{y^2}{36} = 1$		(C) $\frac{x^2}{25} - \frac{y^2}{36} = 1$				
	(B) $\frac{x^2}{36} - \frac{y^2}{45} = 1$		(D) none of these				
44.	$\lim_{x\to 1} (2-x)^{\tan \frac{\pi x}{2}} \text{ is }$	equal to					
	(A) $e^{1/\pi}$	(B) $e^{2/\pi}$	(C) $e^{3/\pi}$	(D) $\frac{2}{\pi}$			
45.	Equation to the norma	al to the curve $x^2 + y^2 =$	= 5 at the point $(2,1)$ is				
	(A) x - 2y = 0		(C) x - 2y = 3				
	(B) x + 2y = 0		(D) x + 2y = 3				

46. Area enclosed by the curve $27x^2 + 12y^2 - 324 = 0$ between the lines x = 0 and $x = 2\sqrt{3}$ is

(C) 2π

(B) 9π

(A) 7π

(D) $\frac{\pi}{2}$

47.	ability that the card drawn is a							
	(A) $\frac{1}{26}$	(B) $\frac{1}{52}$	(C) $\frac{1}{13}$	(D) $\frac{1}{2}$				
48.	Which among the	following is a false stat	sement?					
	(A) Any bounded	sequence of real number	ers contains a convergen	at sub sequence.				
	(B) A sequence of	real numbers is conver	egent if and only if it is	a Cauchy sequence.				
		(C) If a is an accumulation point of a sequence $\{x_n\}_{n=1}^{\infty}$, then there is a sub sequence that converges to a.						
	(D) Any sequence	$\{x_n\}_{n=1}^{\infty}$ is convergent	if and only if it is bound	ded.				
49.	If a function f is n	nonotonic on $[a, b]$, then	n the set of discontinuit	ies of f is				
	(A) empty	(B) finite	(C) countable	(D) $[a,b]$				
50.	. Let A be the set of all rational numbers in the interval $[0,1]$, and α be the Lebesgue measure of A, then α is equal to							
	(A) zero	(B) one	(C) infinity	(D) none of these				
51.	51. The harmonic conjugate of the function $e^x \cos y + e^y \cos x + xy$ is							
	(A) $e^x \sin y - e^y \sin y$	$\sin x - \frac{1}{2}(x^2 + y^2)$						
	(B) $e^x \sin y + e^y \sin y$	$ax + \frac{1}{2}(x^2 + y^2)$	(D) none of these	-				
52.	2. The Mobius transformation $T(z)$ that maps $z_1 = 1$, $z_2 = 0$, $z_3 = -1$ onto the points $w_1 = i$, ∞ , $w_3 = 1$ is							
	$(A) T(z) = \frac{(i-1)}{2}$		(C) $T(z) = \frac{(i-1)^2}{2}$	$\frac{1}{2z} (i+1)$				
	(B) $T(z) = \frac{(i+1)^2}{2}$	$\frac{1z + (i-1)}{2z}$	(D) none of these					
53.	The value of the indirection is	ntegral $\int \frac{1}{z^2 + 4} dz$ aro	and the circle $ z - i =$	2 oriented in counter clockwise				

(A) zero

(B) π

(C) $\frac{\pi}{2}$

(D) $\frac{\pi}{4}$

54.	Let G be a group, $a \in G$ and $H = \{a^n n \in \mathcal{Z}\}$ where \mathcal{Z} is the set of integers. Then which of the following is <i>not</i> true?				
	 (A) H is a subgroup of G (B) G and H have the same identity (C) H is the smallest subgroup of G containing the element a (D) None of these 				
55.	The number of abelian	groups (up to isomorph	hism) of order 24 is		
	(A) 2	(B) 3	(C) 8	(D) None of these	
56.	Number of left cosets of	of the subgroup $<18>$ o	of \mathcal{Z}_{36} is		
	(A) 18	(B) 36	(C) 4	(D) none of these	
57.	If U denotes the set of	units in the ring of rational	ional numbers Q , then		
	(A) $U = \{1\}$ (B) $U = \{1, 2\}$		(C) U is empty (D) U consists of all n	on-zero elements of $\mathcal Q$	
58.	The characteristic of the	ne ring $\mathcal C$ of complex nu	mbers is		
	(A) zero	(B) one	(C) infinity	(D) none of these	
59.	The degree over Q of t	he splitting field over \mathcal{Q}	2 of the polynomial x^2 +	-3 in $\mathcal{Q}[x]$ is	
	(A) Zero	(B) 1	(C) 2	(D) none of these	
60.	If $A = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$ and B	$B = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$, then ($(AB)^{-1}$ is equal to		
	$(A) \ \frac{1}{11} \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}$,	$(C) \ \frac{1}{11} \begin{pmatrix} 5 & 1 \\ 14 & 5 \end{pmatrix}$		
	$(B) \ \frac{1}{11} \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$		$(D) \ \frac{1}{11} \begin{pmatrix} 14 & 5 \\ 5 & 1 \end{pmatrix}$		
61.	The value of the determ	minant $\begin{vmatrix} a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2 \end{vmatrix}$	is equal to		
	(A) $(a^6 + b^6)$		(C) $(a^3 + b^3)^2$		
	(B) $(a^6 - b^6)$		(D) $(a^3 - b^3)^2$		

62.	If the vector $(3k+2,3,10)$ belongs to the linear span of the set $S = \{(-1,0,1),(2,1,4)\}$, then the value of k is					
	(A) 2	(B) -2	(C) 1	(D) -1		
63.	. If the dimensions of the subspaces \mathcal{U} and \mathcal{V} of the vector space \mathcal{W} are respectively 3 and 4 $\dim(\mathcal{U}\cap\mathcal{V})=1$, then $\dim(\mathcal{U}+\mathcal{V})$ is equal to					
	(A) 4	(B) 6	(C) 7	(D) none of these		
64.	Which of the following	is a subspace of the two	o dimensional Euclidear	n plane?		
	(A) $2x + 3y = 0$ (B) $2x + 3y + 1 = 0$		(C) $2x - 3y + 1 = 0$ (D) $2x + 3y - 1 = 0$			
65.	If $T: \mathbb{R}^3 \to \mathbb{R}^2$ is define	ned by $T(x, y, z) = (x, y)$), then the dimension of	f the kernel of T is		
	(A) 0	(B) 1	(C) 2	(D) indeterminate		
66.	The characteristic poly	rnomial of the matrix $\left(\right.$	$\begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{pmatrix}$ is			
	(A) $\lambda^3 + 6\lambda^2 - 11\lambda + 6\lambda^2$	6	(C) $\lambda^3 - 6\lambda^2 + 11\lambda - 6\lambda^2 + 11\lambda = 0$	6		
	(B) $\lambda^3 + 6\lambda^2 - 11\lambda - 6\lambda^2 = 11\lambda - 6\lambda^2 =$	6	(D) none of these			
67.	A matrix A is diagonal	lizable if the roots of its	characteristic polynom	ial are		
	(A) real and equal		(C) imaginary			
	(B) real and distinct		(D) none of these			
68.	If $gcd(a, b) = d$, then g	$\operatorname{cd}\left(\frac{a}{d}, \frac{b}{d}\right)$ is equal to				
		(B) d	(C) d^2	(D) 1		
69.	The remainder when 9	7! (factorial) is divided	by 101 is			
	(A) 15		(C) 17			
	(B) 16		(D) none of these			

(A)
$$y + x \frac{dy}{dx} = c$$

(C)
$$x + y \frac{dy}{dx} = 0$$

(B)
$$y - x \frac{dy}{dx} = c$$

71. The solution of the differential equation $(y^2 - y)dx + xdy = 0$ is

(A)
$$y(x+c) = x$$

(C)
$$x(y+c) = x$$

(B)
$$x(x+c) = y$$

72. Complete solution of the partial differential equation $p^2 + q^2 = m^2$ is

(A)
$$z = ax - y\sqrt{m^2 + a^2} + b$$

(C)
$$z = ax + y\sqrt{m^2 - a^2} + b$$

(B)
$$z = ax + y\sqrt{m^2 + a^2} + b$$

73. The partial differential equation

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} + 3\frac{\partial^2 z}{\partial x \partial y} + 2\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = 0 \text{ is}$$

(A) parabolic

(C) hyperbolic

(B) elliptic

(D) none of these

74. In a metric space, every one point set is

(A) open

(C) both open and closed

(B) closed

(D) neither open nor closed

75. In the metric space (\mathcal{R}^2, d_1) , where $d_1(x, y) = |x_1 - y_1| + |x_2 - y_2|$ for $x = (x_1, x_2)$ and $y = (y_1, y_2)$, the sequence $\left\{\left(\frac{1}{n}, \frac{2n+1}{n+1}\right)\right\}$ converges to

- (A) (1,0)
- (B) (0,1)
- (C) (0,2)
- (D) (2,0)

76. In a topological space, which of the following is a *wrong* statement?

- (A) Second countability is a hereditary property
- (B) Metrizability is a hereditary property
- (C) Regularity is a hereditary property
- (D) None of these

- 77. Which of the following statements is *not* true?
 - (A) A subset of \mathcal{R} is connected if and only if it is an interval
 - (B) Every closed and bounded interval is compact
 - (C) Closure of a connected subset is connected
 - (D) None of these
- 78. Let X be a normed linear space over the field K. E_1 and E_2 are non-empty disjoint convex subsets of X with E_1 open. Then there exist $f \in X'$ and $\alpha \in \mathcal{R}$, for all $x_1 \in E_1$ and $x_2 \in E_2$ such that
 - (A) $\operatorname{Re} f(x_1) \le \alpha \le \operatorname{Re} f(x_2)$
 - (B) $\operatorname{Re} f(x_1) \le \alpha < \operatorname{Re} f(x_2)$
 - (C) $\operatorname{Re} f(x_1) < \alpha < \operatorname{Re} f(x_2)$
 - (D) $\operatorname{Re} f(x_1) < \alpha \le \operatorname{Re} f(x_2)$
- 79. Let X and Y be Banach spaces and B(X,Y) denotes the set of bounded linear maps from X to Y. Then which of the following statements is *not* true?
 - (A) Every closed linear map $A: X \to Y$ is continuous
 - (B) If $A \in B(X,Y)$ is surjective, then A is an open map
 - (C) If $A \in B(X, Y)$ is bijective, then $A^{-1} \in B(Y, X)$
 - (D) None of these
- 80. Let $\{u_1, u_2, \dots, u_m\}$ be an orthonormal set in an inner product space X. Then for $x \in X$, $\sum_{n=1}^{m} |\langle x, u_n \rangle|^2 = \|x\|^2$ if and only if
 - $(A) x \in \{u_1, u_2, \cdots, u_m\}$
 - (B) $x \notin \{u_1, u_2, \cdots, u_m\}$
 - (C) $x \in \operatorname{span}\{u_1, u_2, \cdots, u_m\}$
 - (D) $x \notin \operatorname{span}\{u_1, u_2, \cdots, u_m\}$