1.	The function	$f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x x$	i is

- injective but not surjective surjective but not injective A) B)
- bijective C)

- D) neither injective nor bijective
- The set of values of m such that the roots of the equation $3x^2 + 2x + m(m-1) = 0$ 2. are of opposite signs is
 - A) (0,1)
- B) [0,1]
- C) [0, 1)
- D) $(0, \infty)$
- The foot of the perpendicular drawn from the point (-2, -2) to the line x + y = 2 is 3.
 - A) (-2,0)
- B) (1,1)
- C) (0, -2)
- D) (-1, -1)
- 4. If the lines 3x + 4y + 17 = 0 and 6x + 8y + 9 = 0 are tangents to the same circle, then the radius of the circle is
 - A) 5
- B)
- C) $\frac{5}{4}$
- D)
- An equilateral triangle is inscribed in the parabola $y^2 = 4x$ with one of the vertices at 5. the vertex of the parabola. Then the perimeter of the triangle is
 - A) 12
- $12\sqrt{3}$ B)
- $8\sqrt{3}$ C)
- $24\sqrt{3}$ D)
- The equation of the sphere passing through origin and having radius 1 and centre on the 6. positive z – axis is
 - A)
 - $x^{2} + y^{2} + z^{2} 2z = 0$ B) $x^{2} + y^{2} + z^{2} 2x 2y = 0$
 - C) $x^2 + y^2 + z^2 2y = 0$ D) $x^2 + y^2 + z^2 2z = 1$
- If $f(x) = \begin{cases} \frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}, & if x \neq 0 \\ 0 & if x = 0 \end{cases}$. 7.

Then $\lim_{x\to 0} f(x)$ is

- A)
- B) 1
- C) -1
- D) Does not exist
- 8. Suppose (x) = x - [x] where [x] denotes the greatest integer less than or equal to x, then

$$\lim_{n\to 0} \frac{(x)+(2x)+\cdots+(nx)}{n^2}$$
 is

- A) χ
- B)
- C)

9.	A bag contains 3black, 3 white and 1 red balls. Three balls are drawn one after the other without replacement. The probability that the third ball is red is:													
	A)	<u>5</u> 7	B)	$\frac{2}{7}$	C)	$\frac{3}{7}$	D)	$\frac{1}{7}$						
10.	1	blem in statistic pectively. The p						g it individually are $\frac{1}{3}$, $\frac{1}{4}$, ne of them is						
	A)	$\frac{11}{30}$	B)	12 30	C)	13 30	D)	$\frac{7}{30}$						
11.	If $f(x)$	$x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) \\ 0 \end{cases}$	$ x \neq x = $	0 0										
	then,													
	A)	f is not conti	nues at	x = 0										
	B) f is continues everywhere but it is not differentiable at at $x = 0$ C) f is differentiable everywhere but its first derivative $f'(x)$ is not continuous													
	C) f is differentiable everywhere but its first derivative $f'(x)$ is not continuous													
	D)	f is infinitely	differe	ntiable										
12.	If $\int_{-\infty}^{\infty}$	$\frac{\cot x^{-1}x}{\sqrt{1+x^2}}dx = \int dx$	xtan ⁻¹ .	x + g(x), then										
	A)	$f(x) = \sqrt{1 + 1}$	$-x^2$, $g($	$x) = -\log(x + \sqrt{x})$	$\sqrt{1+x^2}$) + c								
	B)	$f(x) = \frac{1}{\sqrt{1+x^2}}$	$\frac{1}{2}$, $g(x)$	$= -\log(x - \sqrt{1})$	(x^2)	+ c								
	C)	$f(x) = -\sqrt{1}$	$+ x^2$, g	$y(x) = \log(x + \frac{1}{2})$	$\sqrt{1+x^2}$	$(\frac{1}{2}) + c$								
	D)	$f(x) = \sqrt{1 + 1}$	$-x^2$, $g(x)$	$x) = -\log(x - \frac{1}{2})$	$\sqrt{1+x^2}$	$(\frac{1}{2}) + c$								
13.	Let (x	(x_n) and (y_n) be	e two re	al sequences w	ith $x_n =$	$= \frac{2^n}{n!}, \ y_n = n^{\frac{1}{n}}$	$, n \ge 3$	1						
	A)	(x_n) converg	es to 0 a	and (y_n) conver	rges to	1								
	B)	(x_n) converg	es to 1 a	and (y_n) conver	rges to	1								
	C)	(x_n) converg	es to 1 a	and (y_n) conver	rges to	0								
	D)	(x_n) converg	es to 0 a	and (y_n) conve	rges to	0								
14.	The va	alue of the integ	gral $\int_0^3 [$	$[x]d(x^2)dx$, wh	here $[x]$	denotes the gr	eatest in	nteger not greater						
	than x	is												
	A)	9 2	B)	13	C)	<u>55</u> 3	D)	10						

15.	I et f l	be the function defined by $f(x)$	$\int x$	$\sin\left(\frac{\pi}{x}\right)$,	$0 < x \le 2$	Then
13.	Letj	se the function defined by $f(x)$) — (₀ ,		x = 0	THEI
	A)	f is continuous but not of box	unded v	ariation		
	B)	f is bounded and not of boun	ded var	riation		
	C)	f is neither continuous nor of	f bound	ed variat	ion	
	D)	f is bounded, continuous and	of bou	nded var	iation	
16.	Let $\langle f_n \rangle$) be a sequence of non-negative	ve meas	surable fu	inctions that	converges almost everywher
	to a fu	unction f and if $f_n \leq f$, for all	n, ther	ı		
	A)	$\int f < \lim \int f_n$	B)	$\int f = 1$	im $\int f_n$	
	C)	$\int f = 0$	D)	$\int f > 1$	im $\int f_n$	
17.	Suppo	se = $f(z) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^{n(n+1)}$.	Then			
	A)	f(z) converges for $ z $ < 1 and	diverge	s at z=1		
	B)	$f(z)$ converges for $ z \le 1$				
	C)	f(z) converges for $ z > 1$				
	D)	f(z) converges for all z				
18.		be a connected open subset of () ing is true?	\mathbb{C} and f	$: X \to \mathbb{C}$ l	be an analytic	e function. Then which of the
	A)	If $f(z)$ is real for all $z \in X$, t	hen f	is a const	tant function	
	B)	If $f(z)$ is real for all $z \in X$, t	then $f =$	≡ 0		
	C)	If $f(z)$ is purely imaginary f	or all z	$\in X$, the	$n f \equiv 0$	
	D)	If $f(z)$ is real for all $z \in X$, t	then $f(x)$	z) > 0 for	or all z	
19.	Let Ct	be the circle $\{z: z = 2\}$. The v	alue of	$\int_{c} \frac{1}{(z^2 + 1)^2}$	$\frac{e^{iz}}{10)\sin z} dz is$	S

A)

 $2\pi i$

B)

20. If $z_{i,i} = 1, 2,5$ are the 5th roots of unity, then $\sum_{i=1}^{5} \frac{1}{z_i}$ is

B) $\frac{1}{5}$

 πi

C) $-2\pi i$

C) 0

D)

D)

0

5i

21.	Let <i>G</i> A)	be an infinite of	eyclic gr B)	oup. Th	en the	number C)	of automor	rphisms on D)	<i>G</i> is 4
22.	The la A)	rgest order of a	an eleme B)	ent in Z	4 x Z ₈ y	(\mathbb{Z}_3) is (\mathbb{C})	24	D)	12
23.	The in A) C)	(1, 3, 2) (4, 7, (1, 3, 2) (7, 4, 4)	, 8)	on (1, 2,	B)	(1, 2,	S ₈ is 3) (4, 7, 8) 2) (4, 8, 7)		
24.	The mA)	umber of soluti 0	ons of x B)	$x^2 + 8x - 1$	- 3 = 0		is 2	D)	12
25.	Which A) B) C) D)	The fields \mathbb{R} 2 \mathbb{Z} and 3 \mathbb{Z} are There is only	and C and e isomore one ring	re isomo rphic rii g homoi	ngs morphis				
26.	The mA)	umber of zero of 360	divisors B)	of Z ₃₆₀ 180	is	C)	96	D)	48
27.	Suppo A) B) C) D)	ose $f(x) = x^4 - f(x)$ is irreduce $f(x)$ is irreduce $f(x)$ is irreduce $f(x)$ is reduce $f(x)$ is reduce	icible ov icible ov icible ov	ver R ver Q bu ver C	ıt reduc			??	
28.	Which A) B) C) D)	of the following π is algebraic π is algebraic $\sqrt{2}$ is transcent $\sqrt{2} + \sqrt{3}$ is the following π	over R over Q ndental	over R	over R				
29.	The do	egree of \mathbb{Q} ($\sqrt{2}$	$\sqrt{3}$) or B)	over Q i	S	C)	4	D)	8
30.	Let <i>R</i> A) B) C) D)	be a ring with M is a proper $M = R$ R/M is a field M is the trivial	r ideal d , if R is	commu			ning a unit,	then	
31.	Let A A) C)	and B be two s rank $(AB) = r$ rank $(AB) = r$	ank (B)		of same B) D)	rank ($defined over \\ BA) = rank \\ AB) \le rank$	(<i>B</i>)	be non-singular. The
32.		alue of a for where $3z = a$ has infinite.		-	_		+y+z=	1, x - y + D	2z = 0, 0

33.	Let <i>T</i> : A) C)	$\mathbb{R}^3 \to \mathbb{R}^3$ be de $\{(x, y, z): x - \{(x, y, z): y - (x, y, $	efined by $T(y = 0)$ z = 0		$(x, x + \{(x, y, \{(0, 0, 0, 0)\})\}$	y, x + y + z) $z): x + y = 0$ $0)$. The nu }	all space of <i>T</i> is
34.	Suppo	se $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$	and $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. The	en			
	A) B) C) D)	A and B have A and B are di A is diagonalis B is diagonalis	agonalizable zable but <i>B</i>	e is not	e equatio	ons but the san	ne minin	nal polynomials
35.	follow A)	$\in M_3(\mathbb{R})$, the sing can be the 0 , 0 , 1 , i , $-i$		c values o B)			ric matri	x. Which of the
36.		characteristic rots of		(\mathbb{R}) are 1,	$,\omega,\omega^2,$	the cube roots	of unity	, then the
	A) C)	$1, \omega, \omega^2$ $1, 1 - \omega, 1 -$	ω^2 ,	B) D)		ω , 1 + ω^2		
37.	Let <i>T</i> :	$\mathbb{R}^2 \to \mathbb{R}^2$ be de	efined by $T($	(x,y)=(y)	, 2x). S	$=\{(x,y)\colon x^2$	$+y^{2} =$	1}. Then $T(S)$ is
	A)	$\{(x,y)\colon x^2+y$	$y^2=1\}$	B)	$\{(x,y)$	$2x^2 + y^2 =$	1}	
	C)	$\{(x,y)\colon 2x^2 +$	$-y^2=2\}$	D)	$\{(x,y)$	$x^2 + 2y^2 =$	2}	
38.	A)	s an odd integer $8k + 1, k \in \mathbb{Z}$ $16k + 1, k \in \mathbb{Z}$		B)	8k – 1 16k –	$1, k \in \mathbb{Z}$ $1, k \in \mathbb{Z}$		
39.	The hi	ghest integer va 5	alue of n such B) 6	ch that 3 ⁿ	divides C)	1749600 is 7	D)	8
40.	A) B) C)	of the following $1 + 2 + \cdots + 1^2 + 2^2 + \cdots + 1^3 + 2^3 + \cdots + 1^2 - 2^2 + \cdots$	$(n-1) \equiv 0$ $+ (n-1)^{2}$ $+ (n-1)^{3}$	$ (mod n) $ $ \equiv 0 (mod $ $ \equiv 0 (mod $) ! n) ! n)		?	
41.	The or A)	thogonal trajec $y^2 = 4a(x + a)$ $y = 4a(x + a)$	$a)^2$	B)	$x^2 = 4$	$a^{2} = 4a(x + a)$ $4a(y + a)$ $4a(x + a)$) is	
42.	If W is	s the Wronskian	n of the diffe	erential eq	uation y	y'' + y = 0, the	en	
	A)	$ \mathbf{W} = 1$	B) W	>1	C)	$ \mathbf{W} < 1$	D)	W = 0

- Let $\{P_n(x)\}\$ be the sequence of Legendre polynomials 43.
 - A) $\int_{-1}^{1} P_n(x) P_m(x) dx = 1$ if m = n
 - $\int_{-1}^{1} P_n(x) P_m(x) dx = \frac{1}{2n+1} \text{ if } m \neq n$
 - C) $\int_{-1}^{1} P_n(x) P_m(x) dx = 0$ if m = n
 - D) $\int_{-1}^{1} P_n(x) P_m(x) dx = \frac{2}{2n+1}$ if m = n
- Let $J_p(x)$ denote the Bessel function. Which of the following is true? 44.
 - A) $\frac{d}{dx}\left(x^p J_p(x)\right) = x^{p-1} J_{p-1}(x)$
 - B) $\frac{d}{dx}\left(x^p J_p(x)\right) = x^p J_{p-1}(x)$
 - C) $\frac{d}{dx}(x^{-p}J_p(x)) = x^{-p}J_{p+1}(x)$
 - D) $\frac{d}{dx}(x^{-p}J_p(x)) = x^{-p}J_{p-1}(x)$
- The solution of the partial differential equation $(z-y)\frac{\partial u}{\partial x} + (x-z)\frac{\partial u}{\partial y} = y-x$ is 45.
 - $x^2 + y^2 + z^2 = f(x + y z)$
 - $x^{2} + y^{2} + z^{2} = f(x y + z)$ B)
 - C)
 - $x^{2} + y^{2} + z^{2} = f(x + y + z)$ $x^{2} + y^{2} z^{2} = f(x + y + z)$
- The solution of the partial differential equation $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y}$ 46.
 - $az = (ax + y)^2 + c$ $z = (x y)^2 + c$ A)
- B) $z^2 = (ax + y)^2 + c$ D) $2az = (ax + y)^2 + c$
- C)
- The equation $2u_{xx} + 4xy u_{xy} u_{yy} = 0$ is 47.
 - A) Parabolic

B) Elliptic

Hyperbolic C)

- Parabolic only in the region where $y \ge 0$ D)
- Suppose $X = \{0, 1, 2, 3\}, \ \tau_1 = \{X, \emptyset, \{0\}, \{3\}, \{0, 3\}\}, \ \tau_2 = \{X, \emptyset, \{3\}, \{0, 1, 3\}\}.$ Let the 48. map $f:(X,\tau_1)\to (X,\tau_2)$ be defined as f(x)=x, Then
 - f is continuous but not open.
 - f is open and not continuous. B)
 - C) f is both open and continuous.
 - f is neither open nor continuous. D)

49.	49. Let $X = C[0, 1]$, the collection of all continuous function on the closed interval $[0, 1]$. Consider the metrics ρ and d defined by, $\rho(f, g) = \sup_{x \in X} f(x) - g(x) $ and $d(f, g) = \int_0^1 f(x) - g(x) dx$. Then											
	A) B) C) D)	The topology The topology Both d and ρ The largest to and d is the t	genera genera opology	ted by a te the sa contain	l is stroume topoled in the	nger thology	an the to	pology	genera	ited by ρ))
50.	Which	n of the followi	ng is no	ot a topo	logical	proper	ty?					
	A)	Compactness	S		B)	Conn	ectedness	S				
	C)	Completenes	S		D)	First	countabil	ity				
51.	Let (X	(, ,) be a nor	med lin	ear spac	e over	C. Then	which o	f the fo	ollowin	g is not	true?	
	A) B) C) D)	Every closed subset of X is compact. If $\{x \in X : \ x\ \le 1\}$ is compact, then X is finite dimensional. If every closed and bounded subset of X is compact then X is finite dimensional. If $\{x \in X : \ x\ \le 1\}$ is compact, then X is infinite dimensional.										
52.	Then	$= \mathbb{R}^2 \text{ with nor}$ $\parallel f \parallel \text{ is}$		efined b $\sqrt{2}$					$F: X \to D$	_	f(x,y) =	x + y.
53.	Suppo	ose $X = L^{2}[0, t]$ (t) = 1 - t, the	1] with	inner pr	oduct d	lefined	by $\langle f(t), g \rangle$	$g(t)\rangle = \int_0^t$	$\int_{0}^{1}f(t)\overline{g}$	$\overline{g(t)}dt$. 1		= t
	A)	1	B)	$\frac{1}{3}$		C)	$\frac{1}{6}$		D)	$\frac{1}{2}$		
54.		ose $X = L^2[-\pi \pi]$, by $f_n(t) =$			$n \in \mathbb{N}$, let (f_n)) be a se	quence	of fur	ections d	efined or	n
	A) B) C) D)	$\{f_n\}$ is an orthogonal $\{f_n\}$ is an orthogonal $\{f_n\}$ is neither $\{f_n\}$ is both or	hogona r orthor	l set but normal s	not ort	orthogo	nal in X					
55.		be the projection be the following $I - P$ is also Range of P is Zero space of There can be	ing is no a project sthe zero f P is the	ot true? ction ro space se zero s	of <i>I</i> —	P `I – P	-				-	space

of P

56.	The a	rea of the trian	gle who	se verti	ces are	the third	d roots of unit	y in the	complex plane is			
	A)	$\frac{\sqrt{3}}{4}$	B)	$\frac{\sqrt{3}}{2}$		C)	$\sqrt{3}$	D)	$\frac{3\sqrt{3}}{4}$			
57.	The a	rea of the regio	on {(x, y	$)\in\mathbb{R}^{2};$	$x^2 \le y$	$r \leq 1 - 1$	x^2 } is					
	A)	$\frac{2}{3}$	B)	$\frac{2\sqrt{2}}{3}$		C)	$\frac{2}{\sqrt{3}}$	D)	$2\sqrt{3}$			
58.		a group of 7 m at at least 3 mer				_			form a committee it be done?			
	A)	525	B)	756		C)	221	D)	635			
59.	Consi	Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ and $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$. Then										
	A)	both series ar	e condi	tionally	convei	gent						
	B)	both series ar	e absol	utely co	nverge	nt						
	C)	C) the first series is conditionally convergent and the second series is absolutely convergent										
	D)	the first serie convergent	s is abso	olutely	converg	gent and	the second se	ries is co	onditionally			
60.	The n	number of zeros	s of z ⁵ +	$-3z^{2} +$	1 in z	< 1, co	ounted with m	nultiplici	ty is			
	A)	0	B)	1		C)	2	D)	3			
61.	The h	armonic conjug	gate of t	the func	tion u((x,y)=x	$x^3 - 3xy^2$ is					
	A)	$3x^2y - y^3$	B)	$3xy^2$		C)	$y^3 - 3xy^2$	D)	$3xy^2 - y^3$			
62.	The to	otal number of	subgrou	ıps of a	cyclic s	group of	forder 24 is					
	A)	8	B)	6		C)	4	D)	2			
63.	If the	$matrix \begin{pmatrix} 2 & 1 \\ 0 & 2 \\ 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 2 & 2 \\ 1 & 2 \end{pmatrix}$	is inve	rtible ii	n ℤ/nℤ,	then					
	(i)	gcd(2, n) =	1		(ii)	gcd(3	3, n) = 1	(iii)	$\gcd(6,n)=1$			
	Choo	se the correct s	tatemen	t(s):								
	A)	(i) only			B)	(ii) o	nly					
	C)	(i) and (ii) or	nly		D)	(i), (ii) and (iii)					

64.	The number of subfields of a field with 2 ⁸ elements is:											
	A)	1	B)	2		C)	4		D)	8		
65.		, J be ideals in \mathbb{Z} I + J is generat				$+x^2 + x + 1$ and $x^3 - 2x^2 + x - 2$ respectively.						
	A)	$2x^3 - x^2 + 2$	2x - 1		B)	x + 1						
	C)	x - 1			D)	$x^{2} + 1$	1					
66.	Whic	ch of the follow	ing is no	ecessar	ily an in	vertible	matrix?					
	A)	A nilpotent n	natrix		B)	An idempotent matrix						
	C)	An orthogon	al matri	X	D)	A symmetric matrix						
67.	The 1	rank of the matr	$\operatorname{ix}\begin{pmatrix}1\\5\\4\end{pmatrix}$	2 4 2 2	$\begin{pmatrix} 0 & 1 \\ 2 & 6 \\ 2 & 5 \end{pmatrix}$	is						
	A)	1	B)	2		C)	3		D)	4		
68.	Let A	A be an $n \times n$ m	atrix. T	hen det	t(5A) =	•••						
	A)	5det(A)	B)	5 ⁿ de	et(A)	C)	5 ² det((A)	D)	n ⁵ det	(A)	
69.	The	matrix of chang	e of bas	is from	the star	ıdard ba	sis (e ₁ , e	e ₂) of l	\mathbb{R}^2 to (ϵ	$e_1 + e_2$	$e_1 - e_2$) is	
	A)	$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	B)	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ 1 \end{pmatrix}$	C)	$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$	1)	D)	$\frac{1}{2}\begin{pmatrix}1\\1\end{pmatrix}$	$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$	
70.	Whic	ch of the follow	ing map	s are li	near trai	nsforma	tions fro	m R ² 1	to \mathbb{R}^3 ?			
	(i)	f(x,y) = (x +	- 2, y +	2,2)	(ii)	f(x, y)	= (x +	y, x –	y, 0)			
	(iii)	f(x,y) = (x,y)	, xy)		(iv)	f(x, y)	= (x +	y,x –	y, 2y)			
	A)	(i) and (ii)	B)	(ii) a	nd (iii)	C)	(ii) and	d (iv)	D)	(iii) aı	nd (iv)	
71.	Let 7	be a linear ope	rator or	n ℂ ⁿ , n	> 1 suc	ch that e	every noi	n-zero	vector o	of C ⁿ is	an eigen	
	vecto	or of T. Then										
	A)	all eigen valu	ies of T	are dis	stinct							
	B)	all eigen valu	ies of T	are rea	ıl							
	C)	all eigen valu	ies of T	are equ	ual							
	D)	T must be the	e zero n	natrix								
						9						

72.		be the the vectional on V. The	-		mials w	ith degree ≤ 1	n and let	T be any linear
	A)	1	B)	n – 1	C)	n	D)	n + 1
73.	The s	ystem $x \equiv 1(m)$	nod6), x	$\equiv 1 \pmod{4}$	has			
	A)	exactly one s	olution, 1	modulo12				
	B)	exactly two s	olutions,	modulo12				
	C)	exactly six so	olutions,	modulo12				
	D)	no solution						
74.	Find a	a collection of l	linearly is	ndependent s	olutions	$of \frac{d^4y}{dx^4} - \frac{d^2y}{dx^2}$	= 0.	
	A)	$\{1, x, e^x, e^{-x}\}$		B)	{1, x,	e^{-x} , xe^{-x}		
	C)	$\{1, x, e^x, xe^x\}$		D)	{1, x,	e^x , xe^{-x}		
75.	The e	nvelope of the	1-parame	eter family (x	$(a-a)^2$	$+ (y - 2a)^2 +$	$+z^2=1$	is
	A)	$z = \pm 1$		B)	(2x -	$-y)^2 + 5z^2 =$	= 5	
	C)	$(2x - y)^2 =$	1	D)	$x^2 +$	$y^2 = 1$		
76.	Whic	h of the following	ing is a w	ave equation	1?			
	A)	$u_{tt} = u_{xx}$	B)	$u_t = u_x$	C)	$u_t = u_{xx}$	D)	$u_{tt} = u_x$
77.	Whic	h of the following	ing is is r	not a metric o	on ℝ?			
	A)	$d(x,y) = \sqrt{ x }$	$\overline{x-y }$	B)	d(x, y	$y) = e^x - e^y $	I	
	C)	$d(x,y) = x^3 $	$-y^3$	D)	d(x, y	$y) = \frac{ \mathbf{x} - \mathbf{y} }{1 + \mathbf{x}\mathbf{y} }$		
78.		X, d) be a metrices se the correct s			define o	d(A, B) == ii	nf{d(x, y)	$; x \in A, y \in B\}.$
	(i)	If A and B are	e disjoint	then d(A, B) > 0			
	(ii)	If A and B are	e closed	and disjoint,	then d(A	(A, B) > 0		
	(iii)	If A and B are	e compac	et and disjoin	t, then d	(A,B) > 0		
	A)	(i),(ii) and (ii	i)	B)	(ii) aı	nd (iii) only		
	C)	(iii) only		D)	none	of these		

79.	Which of the following is not true for a non-trivial linear vector space X?												
	A)	There is a no	orm on 2	X									
	B)	There is a no	orm on 2	X which induc	es the di	screte metric							
	C)	The sum of	The sum of two norms on X is a norm on X										
	D)	Any metric induced by a norm on X is unbounded											
80.	Whic	h of the follow	ing spa	ce is a Hilbert	space?								
	A)	l^{∞} space	B)	l ¹ space	C)	l ² space	D)	l ⁴ space					