The energy of the hydrogen atom in the nth state is -----1.

A)
$$+\frac{13.56}{n^2} ev$$

B)
$$-\frac{13.56}{n^2} ev$$

C)
$$+13.56n^2ev$$

D)
$$-13.56n^2ev$$

2. If A and B are Hermitian Operators:

A)
$$AB + BA$$
 is Hermitian and $AB - BA$ is not Hermitian

3. A harmonic oscillator is in the Ground state. What is the value of maximum probability density?

A)
$$\frac{mw}{\hbar\pi}$$

B)
$$\left(\frac{mw}{\hbar\pi}\right)^2$$

C)
$$\left(\frac{mw}{\hbar\pi}\right)^{1/2}$$

B)
$$\left(\frac{mw}{\hbar\pi}\right)^2$$
 C) $\left(\frac{mw}{\hbar\pi}\right)^{1/2}$ D) $\left(\frac{mw}{\hbar\pi}\right)^{1/3}$

The expectation value of r in the general state of hydrogen atom in terms of Bohr 4. radius a_0 is:

A)
$$\frac{3}{2} a_0$$

B)
$$\frac{1}{2} a_0$$

C)
$$a_0^2$$

C)
$$a_0^2$$
 D) $a_0^{1/2}$

5. For Pauli's matrices

A)
$$\sigma x \, \sigma y \, \sigma z = i\hbar$$

B)
$$\sigma x \, \sigma y \, \sigma z = \hbar$$

C)
$$\sigma x \, \sigma y \, \sigma z = 0$$

D)
$$\sigma x \, \sigma y \, \sigma z = i$$

Which of the following are allowed electric dipole transitions? 6.

A)
$$1s \rightarrow 2s$$

B)
$$1s \rightarrow 2p$$

$$C)$$
 3s \rightarrow 5d

D)
$$2s \rightarrow 1s$$

Light elements in stars are produced by: 7.

- Nuclear fission A)
- Nuclear fusion B)
- C) Chemical reaction
- Nuclear transmutation D)

The de-Broglie wave length of an electron accidental through a potential difference of 8. V volts is:

A)
$$\sqrt{\frac{150}{V}}$$
 ' B) $V\sqrt{150}$ ' C) $\frac{\sqrt{150}}{V}$ ' D) $\sqrt{150V}$ '

B)
$$V\sqrt{150}$$

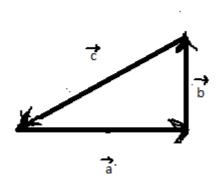
$$C) \qquad \frac{\sqrt{150}}{V}$$

D)
$$\sqrt{150V}$$

The uncertainty relation in quantum mechanics applies to: 9.

- Any pair of variables
- B) Pairs of dynamical variables, the operators corresponding to which commute
- C) Pairs of dynamical variables, the operators corresponding to which do not commute
- D) Position and momentum only

10.	A quantum mechanical system having mass m is described by the wave function $\psi(r) = \exp(ikr)/r$. The probability current density is:					
	A) $\frac{\hbar k}{mr^2}$ B) $\frac{i\hbar k}{mr^2}$	C) $\frac{\hbar k}{imr^2}$ D) $\frac{\hbar k}{mr}$				
11.	A state is denoted as ${}^4D_{5/2}$. The value of A) $L = 2$, $S = 3/2$, $J = 5/2$ B)					
	C) $L = 1, S = 3/2, J = 5/2$ D)	L = 3, $S = 5/2$, $J = 7/2$				
12.	The value of rotational constant B is					
13.	For an anharmonic oscillator the selection A) Fundamental transition B) C) Second overtone D)	First overtone				
14.	the field direction as axis. This precess A) Lande's precession	magnetic field, the electron precesses about ion is known as: B) Gyromagnetic precession D) Larmor precession				
15.	A charge Q is placed at the centre of a cu	be. The electric flux through one of the face is				
	A) $\frac{Q}{24\pi\varepsilon_0}$ B) $\frac{Q}{12\pi\varepsilon_0}$	C) $\frac{q}{6\varepsilon_0}$ D) $\frac{q}{\varepsilon_0}$				
16.	The electric field at a point 5 cm from a l	ong line of charge density $2.5 \times 10^{-6} \mathrm{Cm}^{-1}$ is:				
	A) $9 \times 10^{3} Nc^{-1}$ B) C) $9 \times 10^{5} Nc^{-1}$ D)					
17.	An electron enters a magnetic field acting east. The electron is deflected along A) North B) South	g vertically downwards with a velocity v from C) North east D) South east				
18.	A wire of length 1 carries a current i along $B = B_0 (\hat{\imath} + \hat{\jmath} + \hat{k})$ T. The magnitude	g x-axis. A magnetic field exists given by of magnetic force acting in the wire is:				
	A) ilB_0 B) $\sqrt{3} ilB_0$	C) $2 i l B_0$ D) $\sqrt{2} i l B_0$				
19.		nagnetic field B, is applied in a direction rent flow j, in a conductor, an electric				
	A) B B) j	C) j. B D) j x B				


20.	The di A) C)	Power Momentum /			B) D)	Ene Inte	0,	/ volum ty	ie		
21.	Pointin A)	ng Vector is: $\vec{E} X \vec{B}$	В) - Ē	$\vec{i} X \vec{H}$	C	C) I	₩ X	\vec{E}	D)	$\vec{B} \ X \ \vec{E}$	
22.	Which A)	of the following Heat rays	ng is no B)	t an elec X-rays	_	gnetic C)	c rac	diation? γ- rays		D)	β – rays
23.		tensity of sunli tude of Electric 4.9 x 10 ⁵ v/m 6.4 x 10 ⁵ V/m	field in			7.0	x 1	Suming n 0^2 v/m 0^2 v/m	ormal	inciden	ce, find the
24.	When A) C)	a ray of light e Its wavelength Its frequency	h decrea	ases	ab from B) D)	Its v		elength elength			anged
25.	The sk A) C)	xy appears blue Refraction Reflection	becaus	e of:		B) D)		Scatteri Total in	_	reflecti	on
26.		oherent source num to minimu 25 : 1									
27.		is the fractional ength of incider 20 %	_		_			_		it exper	iment if the 50 %
28.		Young's down, $\lambda = 5 \times 10$									
	A)	10 ⁻² cm	B)	$5x10^{-2}$	mm	C)		$5x10^{-5}$ c	m	D)	$5x10^{-2}$ cm
29.	Why d A) C)	loes a compact Interference Scattering	disc (C	D) shov	v a rain' B) D)	Dif	frac	colours v ction sion	vith wl	nite ligh	t? It is due to:
30.		aximum polariz en reflected and				ction	fro	m a plan	e diele	ectric, w	that is the angle
	A)	0^0	B)	45 ⁰	• •	C)		60^{0}		D)	90^{0}
31.	The wA)	avelength of M X-rays Visible light	Iossaba	uer spec	ctrum	lies B) D)	in 1	the rang Radio v Gamma	vaves		

32.	2. If B_{12} and B_{21} are Einstein's Coefficients of stimulated absorption and emission respectively and g_1 and g_2 are the degenerates of the energy levels E_1 and E_2 respectively, then							
	A) $g_1 B_{12} = g_2 B_{21}$ B) $g_1 B_{21} = g_2 B_{12}$							
	C) $g_1 g_2 = B_{12} B_{21}$ D) $g_1 g_2 B_{12} B_{21} = 1$							
33.	The mass density of nucleus varies with its mass number A as: A) A B) A^2 C) A^{-1} D) Remains constant							
34.	The energy required to break a hydrogen molecule into hydrogen atoms is: A) 4.5 eV B) 4.5 KeV C) 9 eV D) 10 eV							
35.	In the nuclear reaction ${}_{1}H^{2} + {}_{1}H^{2} \rightarrow {}_{2}H^{3} + {}_{0}n^{1}$ If the mass of the deuterium atom = 2.014741 amu mass of ${}_{2}$ He ³ atom = 3.016977 amu and mass of neutron = 1.008987 amu, then the Q value of the reaction is nearly A) 0.000352 Mev B) 3.27 Mev C) 0.82 Mev D) 2.45 Mev							
36.	For a dielectric the polarisation vector \vec{P} is given by: A) $\vec{P} = \varepsilon_0 \vec{E}$ B) $\vec{P} = \frac{\varepsilon_0 \chi}{\vec{E}}$ C) $\vec{P} = \varepsilon_0 \mu_0 \vec{E}$ D) $\vec{P} = \varepsilon_0 \chi \vec{E}$							
37.	In the process of nuclear fission of 1 gm Uranium, the mass lost is 0.92 mg. The efficiency of power house run by the fission reactor is 10 %. To obtain 400 megawatt power from the power house, how much Uranium will be required per hour? A) 174 g B) 208 g C) 416 g D) 104 g							
38.	The term symbols of the ground states of 12 Mg and 13 Al are respectively: A) 1 S ₀ and 2 P _{1/2} B) 1 S ₀ and 2 P _{3/2} C) 3 S ₀ and 1 P _{1/2} D) 1 S _{1/2} and 2 P _{1/2}							
39.	The width of the energy gap of a superconductor is maximum at: A) 0K B) Transition temperature C) Room temperature D) None of these							
40.	 The magnetic dipole moment is the product of current in the loop and A) Flux enclosed by current loop B) Square of area enclosed by current loop C) Area enclosed by current loop D) None of these 							
41.	At Neel temperature: A) Permeability is minimum B) Permeability is maximum C) Susceptibility is minimum D) Susceptibility is maximum							

42.	Bohr r	nagneton is de	fined as	5:				
	A)	Magnetic mo	ment of	f an electron s	spin			
	B)	Magnetic mo	ment of	f a nucleus				
	C)	Magnetic mo	ment of	f an electron i	n orbital	motion		
	D)	Magnetic mo	ment pe	er unit volum	e of electi	ron		
		_						
43.	In a si	mple cubic latt	ice d ₁₀₀	$: d_{110} : d_{111} $ is	3:			
	A)	6:3:2	B)	$6:3:\sqrt{2}$	C)	$\sqrt{6}:\sqrt{3}:\sqrt{2}$	D)	$\sqrt{6}:\sqrt{3}:2$
)	0 0 =	_,	0 0 12	•)	, , , , , , , , , , , , , , , , , , ,	2)	, o , o _
44.	The M	filler indices of	f the nla	ne parallel to	v and z a	ixes are:		
	A)	(100)				(001)	D)	(111)
	11)	(100)	D)	(010)	C)	(001)	D)	(111)
45.	Δ nrot	on and an α - r	varticle	has the same	Kinetic e	nergy. If the ma	es of t	he 🗠 narticle
7 3.	-	-				die wavelength		-
	15 10u1	times that of a	i proton	i, now do the	ii uc biog	iic wavelength	compa	10
		2		2				
	A)	$\lambda_p = \frac{\kappa_{\infty}}{2}$	B)	$\lambda_p = \frac{\kappa_{\infty}}{4}$	C)	$\lambda_p = 2\lambda_{\infty}$	D)	$\lambda_p = 4 \lambda_{\infty}$
		r Z		r 4		r		r
46.	Ohma	lovy relates to	tha alaa	tria field E	anduativi	ty a and ourror	at dong	ity Log.
40.				_		ty σ and currer		
	A)	$J = \sigma E$	B)	$J = \frac{L}{I}$	C)	$J = E\sigma^2$	D)	$J = \frac{\sigma}{E}$
				O				L
47.	If F is	s the energy of	the lov	vest state of a	one dime	ensional potenti	al boy	of length
T /.	_					length of the bo		•
				-				
	A)	$E_2 = E_1$	B)	$E_2 = \frac{-1}{2}$	C)	$E_2=2E_1$	D)	$E_2 = 4E_1$
48.	If the 1	Fermi energy o	of a met	al is 1.4 ev, the	he Fermi	temperature of	the met	tal is
	approx	kimately:		2		2		_
	A)	$1.6 \times 10^4 \text{ K}$	B)	$1.6 \times 10^3 \text{ K}$	(C)	$1.6 \times 10^2 \text{ K}$	D)	$1.6 \times 10^{5} \text{ K}$
49.	The sp	acing between	the n th	energy level	and the n	ext higher level	in an	one dimensional
	potent	ial box increas	es by:					
	A)	(2n-1)	B)	(2n + 1)	C)	(n-1)	D)	(n+1)
50.	Four p	hysical quanti	ties are	given in Colu	ımn I and	their order of v	alues i	n Column II.
	Match	approximately	y					
		Column I				Column II		
	a. Th	ermal energy o	of air at	room temper	ature	1. 0.02 e	V	
	b. Bi	nary energy of	heavy	nuclei per nuc	cleon	2. 2 ev		
	c. X-	ray Photon ene	ergy			3. 10 key	Į.	
	d. Pho	oton energy of	visible	light		4. 7 Mev	7	
	A)	a-1, b-4, c-3,	d- 2	B)	a-2, b	-1, c-3, d-4		
	C)	a-3, b-4, c-2,		D)		-3, c-2, d-1		
	,	. ,		,		• •		
51.	AND 9	gate can be pro	duced	using two	gates.			
	A) `	NOT	B)	NOR	C)	XOR	D)	NAND
	,		,				,	

52.	The sp	pace lattice of s	odium o	chloride	crystal	is:				
	A)	fcc				B)	bcc			
	C)	simple cubic				D)	orthorhombi	c		
53.	Which	of the following	ng devi	ce is a n	egative	resistai	nce device?			
	A)	Triode			B)	Transi	istor			
	C)	Thyristor			D)	Zener	diode			
54.		base current is						current	t changes fi	rom
		to 3.5 <i>mA</i> . The			n C-E c					
	A)	50	B)	75		C)	100	D)	125	
<i></i>	TD.	1:0 0		1 4	D.C.		.1 .1			
55.		mplifiers of ga								
	A)	$A_1 + A_2$	B)	A_1 -	A_2	C) -	2	D)	$A_1 \times A_2$	
56.		umber of flip-fl	ops nee	eded to c	construc	et a shif	t register capa	ble of s	toring a 6-	bit
	-	number is:	D)	4		C	2	D)	10	
	A)	6	B)	4		C)	2	D)	12	
57.	The or	utput voltage o	f a 6-bit	hinary	ladder v	with the	innut 101001	is.		
37.	A)	0.641 v	B)		V		0.766 v	D)	0.810 v	
	,		,			- /		,		
58.	The re	elation between	∝ and	β param	neters of	f a trans	sistor are giver	ı by:		
	A)	$\propto = \frac{1-\beta}{\beta}$	B)	$\alpha = \frac{1+}{1+}$	β	C	$\alpha = \frac{\beta}{\beta}$	D)	α= -	β
	11)	β	D)	β		C)	$1-\beta$	D)	1	L+β
50	XX71-:-1-		1 4	1 1. : . 1.	4 :	4::.4.				
59.		of the following	_	_	-		ance?			
	A) B)	NPN transisto PNP transisto								
	C)	N type channe		_	uration					
	D)	P type channe								
	2)	i type chamic	71 1110 01							
60.	For a 6	Germanium P-1	N juncti	on, the	maximu	ım valu	e of barrier po	tential	is:	
	A)	0. 3 v	B)	0.7 v		C)	1. 3 v	D)	1.7 v	
61.		lattice temperat	ture is ii	ncreasec	d, the H	all coet	ficient of a se	micond	uctor will	
	A)	Decrease								
	B) C)	Increase First increase	a and th	an daga	0000					
	D)	Remain const		en dece	ases					
	D)	Kemam const	anı							
62.	A Sola	ar cell is actual	ly a dev	rice whice	ch utilis	es:				
	A)	Photo conduc	tive effe	ect	B)	Photo	voltaic effect			
	C)	Photo emissiv	e effect	t	D)	Photo	resistive effect	et		
63.		mitt trigger cor	nverts sl	-						
	A)	Sine wave		B)		ooth wa	ve			
	C)	Triangular wa	ive	D)	Square	e wave				

- 64. For two vectors \vec{A} and \vec{B} , $|\vec{A} + \vec{B}| = |\vec{A} \vec{B}|$ only when
 - A) $|\vec{A}| = |\vec{B}| \neq 0$
 - B) $\vec{A} \perp \vec{B}$
 - C) $|\vec{A}| = |\vec{B}| \neq 0$ and \vec{A} and \vec{B} are parallel
 - D) $|\vec{A}| = |\vec{B}| \neq 0$ and \vec{A} and \vec{B} are antiparallel
- 65. Three vectors add to zero, as in the right triangle. The value of $\vec{a} \cdot \vec{b}$ is:

- A) 0
- B) a b
- C) 1
- D) infinity

- 66. The value of the gamma function: $\Gamma(\frac{1}{2})$ is:
 - A) 1
- Β) π
- C) $\sqrt{\pi}$
- D) 0
- 67. If $|\vec{A}| = 2$ and $|\vec{B}| = 4$, then match the relations in Column I with the angle θ between \vec{A} and \vec{B} in Column II

000,	cotwoon it and b in column it							
	Column I		Column II					
a.	$\vec{A} \cdot \vec{B} = 0$	1.	$\theta = 0$					
b.	$\vec{A} \cdot \vec{B} = +8$	2.	$\theta = 90^{0}$					
c.	$\vec{A} \cdot \vec{B} = 4$	3.	$ heta=180^{0}$					
d.	$\vec{A} \cdot \vec{B} = -8$	4.	$\theta = 60^{0}$					

- A) a-2, b-1, c-4, d-3
- B) a-1, b-2, c-4, d-3
- C) a-3, b-4, c-1, d-2
- D) a-4, b-1, c-2, d-3
- 68. The relationship between the Bessel functions $J_n(x)$ and $J_{-n}(x)$ is:
 - $A) J_{-n}(x) = -J_n(x)$
- $B) J_{-n}(x) = J_n(x)$
- C) $J_{-n}(x) = (-1)^{n+1}J_n(x)$
- D) $J_{-n}(x) = (-1)^n J_n(x)$

69.			ollowing is not a unit of time? B) Par second							
	A) C)	Second Year			B) D)		second			
70.	The va	alue of the integrate								
	A)	1	B)	π		C)	$\frac{1}{\pi}$		D)	$\frac{1}{2\pi}$
71.	The co A) B) C) D)	omponent of a \vec{R} is along po \vec{R} is along po \vec{R} makes an a \vec{R} is along neg	sitive Y sitive X ngle of	-axis -axis 45 ⁰ with			ve maxii	num va	lue if:	
72.	perfec	ject of mass m tly inelastic co posite direction 0	llision v	vith an c	bject to	wice the	e mass b	out half	the spee	d moving in
	Ź		,	_		ŕ		,		
73.		stem of N p m of the sys 3N		· ·				unts, t		k -N
74.	If the B A) B) C) D)	Lagrangian of a r alone is a z alone is a z and r are ϑ and r a	cyclic cyclic cyclic	coording	inate ate ates	(r˙ θ +	rϑ³ -	+ ż ²)	, then:	
75.	The ar	ngular moment	um L of	f a rotati	ng obje	ect is:				
	A)	Iw	B)	$\frac{1}{2}Iw^2$		C)	I∝		D)	$\sum mr^2$
76.	The ec	quation of a pro	gressiv	e wave i	is					
		$Sin \left[\pi \left(\frac{t}{10} - \frac{x}{4} \right) \right]$ Vavelength of the second seco	he wave	e is: 4 m	C)	2 r	n	D)	10 m	
77.		icle is executin	ng motio	on $x = A$	l cos(ω	$(t-\theta)$.	The n	naximur	n veloci	ty of the
	particl A)	e 1s: Αω	B)	Αω сο	sθ	C)	Aω si	пθ	D) <i>A</i>	$sin\theta$
78.		$\cos \omega t + 3 \sin \omega$	ıωt is th	ne equat	ion of a	particle	e execu	ting SH	M. The	initial phase
	angle i	$tan^{-1}(\frac{3}{2})$	B)	tan^{-1}	$(\frac{4}{3})$	C)	tan ⁻¹	$(\frac{3}{4})$	D)	$tan^{-1}(\frac{1}{2})$

79.	According to Stefan's law, the internal energy of a thermal system at temperature T is proportional to:							
	A)	T^3	B)	T^4	C)	its volume	D)	its pressure
80.	In sup A) B) C) D)	Electrostatic Magnetic int Interaction o	forces eraction f electro	-	tice	his pairing is d	lue to:	
81.	magne	nergy difference etic field of B = 24.0×10^{-7} 8.7×10^{-7} er	= 1.0 T : ev	is: B)	12.2	in down states $x \ 10^{-7} ev$ $x \ 10^{-7} ev$	of a pro	oton in a
82.			ve to the	e original body	. The ma	ch of mass 1.0 ass of the origi 1.0 kg		
83.	Alpha	at a relative set to the earth?	peed of		ne direct	ion, what spee		off Beta is to pass Beta have with 0.12 c
84.	At wh	at speed does	the Kine	etic energy of a	a particle	e equal to its re	est energ	gy?
	A)	$\left(\frac{\sqrt{3}}{2}\right)C$	B)	$\left(\frac{\sqrt{3}}{4}\right)C$	C)	$\left(\frac{\sqrt{3}}{5}\right)C$	D)	$\left(\frac{\sqrt{3}}{7}\right)c$
85.	If 1 kg A)	g of a substanc $3 \times 10^8 \mathrm{J}$	e is fully B)			y, how much e $1.5 \times 10^8 \mathrm{J}$	nergy is D)	
86.	The m	nomentum (in	Mev / c) of a electron	whose s	speed is 0.60c i	is	
	A)	0.38 Mev /	<i>c</i> B)	0.42 <i>Mev</i> /	<i>c</i> C)	0.51 Mev /	c D)	0.72 <i>Mev / c</i>
87.		entum is:				^{-15}m . The min $05 \times 10^{-20} \text{Kg}$		ncertainty in
	C)	2.80×10^{-15}	Kg m s	S^{-1} D)	2.0	$01 x 10^{-20} Kg$	$g m s^{-1}$	
88.	Hubbl	le's law states	s that (H is the Hub	ble's co	a distance constant): v = Hr		
89.	The quA)	uark content o ud	f proton B)	is: dud	C)	dd	D)	uud

	B) C) D)	Nuclear force Nuclear force Nuclear force	does no	ot obey	inver	se squ	are law				
91.	The va A)	lue of spin for 0	_	ticle P i $+\frac{1}{2}$			$+\frac{3}{2}$	D)) + 1	L	
92.		earges of up Qu $+\frac{2}{3}e$ and $-$			-	_	e and	$-\frac{1}{2}e$			
	C)	+e and $-e$			D)	$+\frac{3}{4}$	e and	$-\frac{3}{4}e$			
93.	-	icle linked to the elsewhere. The									= 1
	A)	a^2	B)	$\frac{a^2}{2}$		C)	$\frac{a^2}{3}$	D)	$\frac{a^2}{4}$		
94.	An eig A)	en function of	the ope	erator $\frac{d}{dx}$	$\frac{2}{c^2}$ is \sqrt{c}	$\psi = e^2$ C)	^{2x} . The 6	correspond	ding eige D)	en value is	s:
95.		on with energy ission probabi 10 ⁻²	lity is n	early	lent o		rier 10.0		and 0.50 D)	nm wide 10^{-7}	. The
96.	$\psi(x) = $ This is A)	ent writes the v = N exp [i (k.) not correct be It is not norm It does not sat The sign of th It does not sat	x ² – ωτ cause: alizable tisfy the ne first t	t)] wave of the company of the comp	equati	on ponen	t is wroı	_			
97.	The Pa A) B) C) D)	A consequence Follows from Follows from Necessary to	ce of ide Bohr's the Sch	entity of quantiz	zation er wa	rules ve equ	ation				
98.		$\frac{5}{2}$, what values						1 2			
	A)	2, 3	3) 1	, 4	C)	5, 7	D)	$\frac{1}{2}$, $\frac{3}{2}$			
99.	which A)	are neutral. W is responsible Nuclear force	for bin	ding is:	B)	Gr	avitatior	nal force	ce betw	een them	
	C)	Electromagne	etic forc	e	D)	Va	nderwaa	ıl force			

Choose the wrong answer

A) Nuclear force is non-central

90.

100.		a conductor become Remains unaltered	s a superconduc	ctor it	s specific heat of	capacity				
	A)									
	B)	Decreases continuo	-	41 4	:4: 4	- 4				
	 Increases showing a discontinuity at the transition temperature Decreases showing a discontinuity at the transition temperature 									
	D)	Decreases snowing a	i discontinuity a	it the ti	ransition temper	ature				
101.		fine splitting of atomi	c spectral lines	is due	to,					
	A)	Spin-orbit coupling	1 1		1					
	B)	The effect of nuclear			angular moment	um				
	C)	Application of extern								
	D)	Application of extern	nal electric field							
102.		ate at which information	on can be carried	d throu	igh a communic	ation ch	annel			
	-	depends on								
	A)	Transmission loss		B)	Transmitted	-				
	C)	Bandwidth		D)	None of the a	above				
103.	The ro	ole of a moderator in a	reactor is:							
	A)	To slow down neutro	ons							
	B)	To prevent harmful i	radiation to esca	ape						
	C)	To produce neutrons								
	D)	To monitor the nucle	ear reaction							
104.	In a particle detector, positively and negatively charged particles can very often be									
	distinguished. This is because:									
	A) Their ionization properties are different									
	B)	They curve different								
	C)	The reactions which								
	D) Only negatively charged one react strongly with atomic nuclei									
105.	A plane electromagnetic wave of frequency 25 MHz travels in free space along x-									
	direction. At a particular point in space and time, $\vec{E} = 6.3\hat{j} \frac{v}{m}$. The value of \vec{B}									
		point is:			m					
		$2.1 \times 10^{-8} \hat{k} \text{ T}$	B)	2.12	х 10 ⁻⁸ ĵ Т					
		$0.4 \times 10^8 \hat{k} \mathrm{T}$,		$x 10^8 \hat{j} T$					
106.	The fr	equencies of X-rays, j	/- ravs and Ultra	aviolet	ravs are respec	tivelv a.	b and c.			
	Then:	1 3 7 7	J		J 1	3 ,				
	A)	a < b, b > c B)	a > b, $b > c$	C)	a > b, $b < c$	D)	a < b, b < c			
107.		and μ_0 represent the								
	-	ent the permittivity an m is given by:	d permeability	of med	lium, then refra	ctive ind	ex of the			
		5 - 7								
	A)	$\epsilon_0 \mu_0$	$\epsilon \mu$	C	66.444	D)	$\epsilon_0 \mu$			
	A)	$\sqrt{\frac{\epsilon_0 \mu_0}{\epsilon \mu}}$ B)	$\sqrt{\overline{\epsilon_0\mu_0}}$	C)	$\sqrt{\epsilon\epsilon_0\mu\mu_0}$	ש)	$\sqrt{\epsilon \mu_0}$			

108.	A thin spherical shell of radius a has total charge Q distributed uniformly over its surface
	The electric field inside the shell is:

A) $\frac{1}{4\pi\varepsilon_0} \cdot \frac{Q}{a^2}$ B) $\frac{1}{4\pi\varepsilon_0} \cdot \frac{Q}{a}$ C) 0

D) Infinite

109. The electric field due to a non conducting infinite charge per unit area σ is:

B) $\frac{\sigma}{\varepsilon_0}$

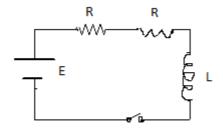
C)

D)

A thin Copper rod 1.0 m long has a mass of 50 g. What is the minimum current in the rod 110. and would allow it to "float" in a magnetic field of 0.1 T

A) 1.2 A B) 2. 5 A 4.9 A

D) 9.8A


111. A bar magnet is falling through a loop of wire with constant velocity with the North Pole entering first. Viewed from the same side of coil as the magnet, as the North Pole enters the wire, the direction of the induced current will be:

Clockwise

Counter clockwise B)

C) Zero D) Along the length of magnet

112. What is the time constant for the circuit shown?

A)

B)

C)

The frequency of oscillation of an L C circuit is: 113.

C)

Which one of the following is not a Boolean identity? 114.

A + B = AB

A + AB = A + BB)

 $(A + \acute{B})B = AB$ C)

D) A(A+B)=A

115. Which of the following molecules would show a microwave (rotational) spectrum?

A) Br_2 B) H Br

 CS_2 C)

D) None of the above

116. The longest wavelength present in the Balmer series of hydrogen, corresponding to H_{α} line is:

A) 656 nm

B) 1312 nm

6560 nm C)

D) 13120 nm 117. A helium – neon laser is:

- Solid state laser
- Two-level laser B)
- C) Three-level laser
- D) Four-level laser

118.

A	В	Y
0	0	1
1	0	1
0	1	1
1	1	0

The above truth table corresponds to:

- OR gate A)
- NOR gate B)
- AND gate C)
- NAND gate D)

119. Resistance of a semiconductor:

- Decreases with increase in temperature
- Increases with increase in temperature B)
- Increases for Germanium and decreases for Silver C)
- Is not affected by charge in temperature D)

120. For a common base amplifier the power gain is:

- A) g_m
- g_m B) R_L
- $g_m + R_L$ D) $g_m R_L$ C)