

18221

120 MINUTES

1.				l numbe	ers such that $a + b + c = 0$. Then the equation						
	A) C)	Two non real	comple	x roots				one irra	ational root		
2.	Which A) B) C) D)	The curve lies The curve doe The curve cut	above es not pa s one of	the x-ax ass thore f the axis	cis ough the s	e origin	•	: 3 ^{-x}			
3.	The do	omain of the rea	al value	d functi	on $y =$	(x-	$\overline{5)(3-x)}$ is:				
	A)	[-3, 5]	B)	[-5, -	-3]	C)	[3, 5]	D)	[-5, 3]		
$ax^2 + bx + c = 0$ has: A) Two non real complex roots B) Two irrational roots C) Two rational roots D) One rational root and one irrational root 2. Which of the following is not true of the graph of the function $y = 3^{-x}$ A) The curve lies above the x-axis B) The curve does not pass thorough the origin C) The root cuts one of the axis D) The value of y increases when x increases 3. The domain of the real valued function $y = \sqrt{(x-5)(3-x)}$ is: A) $[-3,5]$ B) $[-5,-3]$ C) $[3,5]$ D) $[-5,3]$ 4. The centroid of the triangle formed by the lines $x = 0$, $y = 0$ and $5x + 3y = 15$ is: A) $(1,\frac{5}{3})$ B) $(\frac{5}{3},\frac{3}{5})$ C) $(\frac{3}{5},\frac{5}{3})$ D) $(\frac{5}{3},1)$ 5. The equation of the tangent to the parabola $y^2 - 2x - 6y + 5 = 0$ at the point $(-2,3)$ is: A) $x + 2 = 0$ B) $x - 2 = 0$ C) $y + 3 = 0$ D) $y - 3 = 0$ 6. The number of common tangents to the circles $x^2 + y^2 = 36$ and $x^2 - 6x + y^2 = 0$ is A) 0 B) 1 C) 2 D) 4 7. If $\cos \alpha$, $\cos \beta$, $\cos \gamma$ are the direction cosines of a straight line then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 0$ A) 1 B) 2 C) 3 D) $\frac{1}{2}$ 8. The angle between the line joining $(3, 2, -2)$ and $(4, 1, -4)$ and the line joining $(4, -3, 3)$ and $(6, -2, 2)$ is: A) $\frac{\pi}{6}$ B) $\frac{\pi}{4}$ C) $\frac{\pi}{3}$ D) $\frac{\pi}{2}$											
	A)	$(1,\frac{5}{3})$	B)	$\left(\frac{5}{3},\frac{3}{5}\right)$		C)	$\left(\frac{3}{5},\frac{5}{3}\right)$	D)	$(\frac{5}{3},1)$		
5.			angent t	to the pa	rabola j	y^2-2x	x - 6y + 5 = 0	at the	point		
	A)	x + 2 = 0	B)	x-2	= 0	C)	y + 3 = 0	D)	y - 3 = 0		
6.	The no A)	umber of comm	on tang B)	gents to t	the circ	les <i>x</i> ² - C)	$y^2 = 36 \ and$	$x^2 - 6$ D)	$x + y^2 = 0 \text{ is:}$		
7.											
				2		C)	3	D)	$\frac{1}{2}$		
8.				oining (3, 2, -2	and ((4, 1, -4) and the	e line jo	oining		
	A)	$\frac{\pi}{6}$	B)	$\frac{\pi}{4}$		C)	$\frac{\pi}{3}$	D)	$\frac{\pi}{2}$		
9.					ins the						

10.	The fu A) B) C) D)	A local mining A local maximal A local mining A local mining Neither local	num at a mum at num at a	x = 1 $x = 1$ $x = 1$			imum at $x = 1$		
11.	$\int_0^1 x($	$(1-x)^{\frac{1}{2}} dx$	=						
	A)	$\frac{3}{2}$	B)	7		C)	$\frac{2}{3}$	D)	<u>4</u> 15
12.	The ar $x = -$		the cur	ve $y =$	x+2	l, the	x-axis and the s	traight	lines $x = 3$,
	A)	3 square units 13 square uni					re units are units		
13.		die is thrown t					pearing is obser	ved to 1	be 8. The
		$\frac{2}{5}$						D)	<u>11</u> 36
14.	Let a_n	$n_1 = n - n\sqrt{1 - n_1}$	$-\frac{1}{n}$. Th	en \lim_n	$_{ ightarrow\infty}$ a_n =	=			
	A)	0	B)	1		C)	$\frac{1}{2}$	D)	$\frac{1}{4}$
15.	The li	mit of the serie	$\sum_{n=0}^{\infty} \frac{1}{n}$	$\frac{1}{(2n)!}$					
	A)	e	B)	$e + e^2$	2	C)	$\frac{e+e^2}{2}$	D)	$\frac{e^2+1}{2e}$
16.	Let f_n	$(x) = \begin{cases} 1, & if \\ 0, & ot \end{cases}$	$-\frac{1}{n} \le therwise$						
	Then v	which of the fo $f_n(x)$ conver	_			e seque	ence (f_n)		
	B) C) D)	$f_n(x)$ conver $f_n(x)$ conver $f_n(x)$ conver	ges to 1 ges to 1	for all	$x \in (0,$				
17.	For the	e surface $z = 2x$	$x^4 + 4xy$	$+y^2$, th	ne origin	is			
	A)	a saddle point			B)	a minii	mum point		

D)

None of these types of points

C)

a maximum point

18. Let f(x) = the greatest integer < x and

$$g(x) = \begin{cases} 0 & \text{if } x \text{ is an integer} \\ x - f(x) & \text{otherwise} \end{cases}$$

Then which of the following is true about f + g.

- A) Continuous at 0 and discontinuous at 1
- B) Continuous at 1 and discontinuous at 0
- C) Continuous at 0 and discontinuous at $\frac{1}{2}$
- D) Continuous at $\frac{1}{2}$ and discontinuous at 0

19. Let f, g be functions defined on $[0, \pi]$ as follows:

$$f(x) = \begin{cases} \sin x & \text{if } 0 \le x \le \pi/2 \\ 0, & \text{otherwise} \end{cases}$$

$$g(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & \text{if } 0 < x \le \pi/2\\ 0, & \text{otherwise} \end{cases}$$

Then which of the following is true.

- A) f is of bounded variation and g is not of bounded variation in $[0, \pi]$
- B) g is of bounded variation and f is not of bounded variation in $[0, \pi]$
- C) f and g are of bounded variation in $[0, \pi]$
- D) f is not of bounded variation and g is not of bounded variation in $[0, \pi]$

20. Let
$$f(x) = x + 1$$
 and $\alpha(x) = \sin x$. Then $\int_0^{\pi/2} f(x) d\alpha(x) = A$. B) $\frac{\pi}{2}$ C) π D) 2π

- 21. Let $\{E_n : n \in N\}$ be a collection of Lebesgue measurable sets and let m denote Lebesgue measure. Then which of the following is not necessarily true
 - A) $m(\bigcap_{n \in \mathbb{N}} E_n) = \lim_{n \to \infty} m(E_n) \text{ if } E_{n+1} \subseteq E_n \text{ for all } n$
 - B) $m(\bigcap_{n \in \mathbb{N}} E_n) = m(E_1) \text{ if } E_n \subseteq E_{n+1} \text{ for all } n$
 - C) $m(\bigcup_{n \in \mathbb{N}} E_n) = \lim_{n \to \infty} m(E_n) if E_n \subseteq E_{n+1}$ for all n
 - D) $m(\bigcup_{n \in \mathbb{N}} E_n) = m(E_1) \text{ if } E_{n+1} \subseteq E_n \text{ for all } n$

22. If
$$z = e^{1+2i}$$
 then $|z| = A$ B) e^{5} C) $e^{\sqrt{5}}$ D) $\sqrt{5}$

23.		u_1, u_2 u_n b sarily true.	be the n^{t}	h roots o	of unity	for $n \ge 3$. Then which of the following is no					
	A) C)	At least one u At least two r			B) D)		st two roots a $\neq 1$ and if u_1		en $u_1 = -1$.		
24.		radius of convergence of $\sum \alpha_n$		of the p	ower se	eries $\sum a$	$\alpha_n z^n$ is 2 then	the radi	us of		
	A)		B)	2		C)	$\sqrt{2}$	D)	4		
25.		th of the following $f(z) = e^{1/z}$	ng func	tion has			ingularity at z = $\sin(\frac{1}{z})$	r=0.			
	C)	$f(z) = \frac{\sin z}{z}$	<u>z</u>		D)	f(z)	$= \frac{\sin z}{z+1}$				
26.	Let γ	be the circle	z = 2	. Then ($\left(\frac{1}{2\pi i}\right)\int_{1}^{\infty}$	$\frac{e^z-1}{z-1}$	dz =				
	A)	0	B)	e		C)	e + 1	D)	<i>e</i> – 1		
27.	The o A)	rder of (1, 2) in 6	the gro	$\sup_8 Z_6 \in$	ΘZ_8 is	C)	12	D)	16		
28.	Which of the following groups is isomorphic to $Z_{10} \oplus Z_{12}$										
	A)	$Z_2 \oplus Z_{60}$	B)	$Z_3 \oplus Z_3$	Z_{40}	C)	$Z_5 \oplus Z_{24}$	D)	Z_{120}		
29.	Let G	Let G be a group of order 49. Then									
	A)	G is Abelian			B)	G is cyclic					
	C)	G is non- Abel	ian		D)	Z(G) h	nas order 7				
30.	Let S_3 be the symmetric group on three symbols. Then the order of the commutator subgroup of S_3 is										
	A)	1	B)	2		C)	3	D)	6		
31.		* denote the mated by $\frac{1}{2}$. The							e subgroup		
	A)	2 H and 3 H					and $\frac{2}{3}$ H				
	C)	$\frac{1}{4}$ H and $\frac{3}{4}$ H	Н		D)	$\frac{1}{5}$ H a	and $\frac{1}{6}$ H				

32.							rationals. Let f er of \mathbb{Q}^* / ker f		Q* be the		
	A)	1	B)	2		C)	4	D)	infinite		
33.		 H is a normal subgroup of G and K is not normal in G H is not normal in G and K is normal in G 									
34.	The mA)	umber of elemo 25	ents in tl B)	he group o	of units	s of the C)	ring Z_{50} is: 10	D)	5		
35.	The mA)	umber of zeros 2	of the p B)	oolynomia 3	$dx^2 -$	5 <i>x</i> + 6 C)	in the ring Z_{10}	is: D)	5		
36.	The cl	haracteristic of 6	the ring B)	$Z_6 \times Z_8$	is:	C)	24	D)	48		
37.	Which A)	n of the followi	ng is a s B)	solution fo	or x in	the con	gruence relatio 5	n (127) D)	$0^{12} \equiv x \bmod (12)?$		
38.	A =	be the set of al $\{x^4 + ax^3 + b\}$ ving statements 1 is not a zero 2 is not a zero 3 is not a zero 4 is not a zero	$6x^2 + cx^2$ s about A o of any o of any o of any	x + 2 : a, polynom polynom polynom	b, c an ial in A ial in A ial in A	1 1 1	gers}. Check t	he valid	lityof the		
	A) C)	i and ii only a ii and iii only			3) O)		iv only are true only are true	2			
39.		be the field of x^2 ing field of x^2					o of $x^2 + x + 1 + a$	2 and <i>Z</i> D)	$f_a(a)$ be the $1 + a^2$		
40	,	-				,		D)	1 4		
40.	The d	egree of the spi	B)	eld of x^3	– 2 ov	er the r	rationals is: 5	D)	6		
41.	Let <i>A</i> A) B) C) D)	be a 5 x 5 nilpo A is invertible 0 is the only of At least one range	e eigen va ow of <i>A</i>	lue of <i>A</i> has all er	ntries z		owing is necess	arily tru	ue of A?		

42.	$a_{11} =$	$ \begin{array}{c} 1 \text{ and} \\ j = a \end{array} $	d de	t A =	$1, b_{11} = $ other (i	= 0 ar , <i>j</i>). T	nd <i>b_{ij}</i> hen d	= a et C	a_{ij} for a	all oth	es w ner (ith the (i,j) a	followind det <i>E</i>	$3 = \frac{1}{3}$	rope -1,	erties. $c_{11} = 2$
43.	Which	n of th	ne fo	llowir	ng matr	ix is r	ow e	quiva	alent to	the 3	x 3	identi	ity matr	ix?		
	A)	$\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$	1 1 1	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	B)	$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	-1 1 0	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	C)	$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$	1 0 1	$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	D)	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	2 1 3	1 1 2
44.	 Let A be a 5 x 5 matrix of rank 4. Then the system of linear equations AX = 0 has A) Exactly one non zero solution B) Exactly 4 non zero solutions C) No non zero solutions D) Infinitely many non zero solutions 															
45.	the fol	Let A be a 4 x 4 matrix such that $A^2 + A - I = 0$ where I is the identity matrix. Which of the following is not necessarily true? A) A is invertible B) $A + I$ is invertible C) $A^2 + I$ is invertible D) $A - I$ is invertible														
46.	Let $V = \mathbb{Z}_3^3$ be the 3-dimensional vector space over the field \mathbb{Z}_3 . Then which of the following is a linearly independent set in V A) $\{(1, 2, 0), (0, 1, 1), (1, 1, 0)\}$ B) $\{(1, 2, 0), (1, 1, 1), (2, 0, 1)\}$ C) $\{(1, 2, 0), (1, 0, 1), (0, 2, 2)\}$ D) $\{(1, 2, 0), (2, 1, 2), (2, 1, 1)\}$															
47.	Let W follow A)		s in	W.					(1, 2, 1) C)				nen whi	ch of		
48.		s belo	ong	to the	same el	lemen	t in th	ne qu	(1, 1, 2, -1). The state of the	space	\mathbb{R}^3	/ W.	the follo	owing	g pai	irs of
49.			n the			to L a		assin	the plang throu	gh th	e or		hich of			wing

50.	Which of the	following	is a linear	transformation	from \mathbb{R}^3	\rightarrow	\mathbb{R}^3
50.	Willell Of the	10110 W III g	is a inicai	transiormation	110111 11/2		щи.

A)
$$f(x, y, z) = (x + y, x - y, xy)$$

B)
$$f(x,y,z) = (1+z, 1-x, y)$$

C)
$$f(x,y,z) = (2x + y, 3x + z, 2z)$$

D)
$$f(x,y,z) = (2x + 3y, 2x - 3y, 1)$$

51. Let
$$f: \mathbb{R}^4 \to \mathbb{R}^4$$
 be defined by $f: (x, y, z, t) = (x - y, x - z, x - t, 0)$. Then dimension of null space of f is:

52. Let
$$T: \mathbb{R}^4 \to \mathbb{R}^3$$
 be a linear transformation which is represented by the

Matrix
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
. Then which of the following is true

53. Which of the following is the minimal polynomial of the matrix
$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \end{bmatrix}$$

A)
$$(x-1)^2(x-2)^3$$

B)
$$(x-1)^2(x-2)^2$$

C)
$$(x-1)(x-2)^3$$

D)
$$(x-1)(x-2)$$

54. For which of the following values of
$$a$$
 and b the matrix $\begin{bmatrix} a & b & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{bmatrix}$ is diagonalizable.

A)
$$a = 0, b = 1$$

B)
$$a = 1, b = 1$$

C)
$$a = 1, b = -1$$

D)
$$a = 0, b = 0$$

55. The GCD of the numbers
$$2^7 \times 3^5 \times 5^6 \times 13^3$$
 and $2^5 \times 3^7 \times 5^3 \times 13^6$ is

B)
$$6^4 \times 65^3$$

$$6^4 \times 65^3$$
 C) $6^5 \times 65^3$

D)
$$6^7 \times 65^9$$

56. Let
$$\emptyset$$
 denote the Euler totient function. Then \emptyset (1024) =

C)
$$256$$

A)
$$2^{12} \equiv 1 \pmod{21}$$

B)
$$2^{12} \equiv -1 \pmod{21}$$

C)
$$2^{10} \equiv -1 \pmod{21}$$

D)
$$2^{10} \equiv 1 \pmod{21}$$

58.	The sy A) B) C) D)	No solution Exactly one se Exactly two s Exactly six so	olution olutions	(mod 3 s (mod	5) 35)	and $3x \equiv$	€ 4 (mod 7)	has	
59.		of the following $y = 2x \frac{dy}{dx} + \frac{dy}{dx}$							$sy^2 = 4c(x+c)$
	C)	$y = 2x \frac{dy}{dx} +$	⊦ y² ($\left(\frac{dy}{dx}\right)^2$	D)	y = 2	$2x\frac{dy}{dx} - y^2$	$(\frac{dy}{dx})^2$	
60.	cos(<i>x</i> A) B) C)	plution of the di (x-y) dx = xsi (x-y) (x-y) (x-y) (x-y) (x-y) (x-y) (x-y)	$n(x - c) + \cos c +$	(x-y)	xsin(x) = c	c – y)d	x is		
61.	The WA)	Fronskian of the $2e^{2x}$	e solutio B)	ons of the $2e^{-2x}$	ne equat	ion <i>y''</i> - C)	-y = 0 is -2	D)	2
62.	The Bo	essel function J $-J_2(x)$			<i>x</i>)	C)	$J_2(-x)$	D)	$J_2(x)$
63.		Sumber of regular $(x^2 - 6x) \frac{d}{dx}$		-					
	A)	0	B)	1		C)	2	D)	3
64.	The in A)	tegral of the eq $y - z = ce^x$	luation	<i>y dx</i> –	<i>z dx</i> + B)		$dx = 0$ is $= ce^{-x}$		
	C)	$y + z = ce^x$			D)	y + z	$= ce^{-x}$		
65.	If sin ² A)	$\int_{0}^{2} x u_{xz} + A u_{xy}$ $\sin 2x$, + <i>cos</i> B)			parabol C)	ic then the x 2 sin x	value of A D)	is $2\cos x$
66.		omplete integra $p^2 (xq - p)$		-					
	A)	z = ax + by	$+\frac{1}{ab}(a$	$a^3 + b^3$	B)	z = az	$x + by - \frac{1}{ab}$	(a^3+b^3))
	C)	z = ax + by	$-\frac{a+b}{ab}$		D)	z = ax	$x + by + \frac{a+}{ab}$	<u>b</u>	

- 67. Which of the following is not a metric on \mathbb{R}^2 . Here $x = (x_1, x_2)$ and $y = (y_1, y_2)$.
 - A) $d(x, y) = |x_1 y_1| + |x_2 y_2|$
 - B) $d(x,y) = (x_1 y_1)^2 + (x_2 y_2)^2$
 - C) $d(x,y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$
 - D) $d(x, y) = \max\{ |x_1 y_1|, |x_2 y_2| \}$
- 68. Let $X = \{1, 2, 3, 4, 5\}$ and τ_1, τ_2, τ_3 be topologies on X given as follows. $\tau_1 = \{X, \emptyset, \{1, 2\}\}, \quad \tau_2 = \{X, \emptyset, \{1\}, \{1, 2\}\} \text{ and } \quad \tau_3 \text{ is the discrete topology.}$ Then which of the following is true
 - A) τ_1 and τ_2 are metrizable
 - B) τ_2 and τ_3 are metrizable
 - C) τ_1 is metrizable and τ_2 is not metrizable
 - D) au_2 is not metrizable and au_3 is metrizable
- 69. Let \mathbb{R} be the space of all reals with discrete topology. Let \mathbb{R}^+ be the subspace of all positive reals and \mathbb{Q}^+ be the subspace of all positive rationals. Then which of the following is true
 - A) The closure of \mathbb{Q}^+ in \mathbb{R} is \mathbb{R}^+
 - B) The closure of \mathbb{R}^+ in \mathbb{R}^- is $\mathbb{R}^+ \cup \{0\}$
 - C) The interior of \mathbb{Q}^+ in \mathbb{R} is \mathbb{Q}^+
 - D) The interior of \mathbb{R}^+ in \mathbb{R} is \mathbb{Q}^+
- 70. Let X be the space of all continuous real valued functions on [0, 1] with metric given by $d(f,g) = \sup |f(x) g(x)|$. Let

$$\alpha(x) = \begin{cases} x^2 : 0 \le x \le 1/2 \\ \frac{1}{4} : 1/2 \le x \le 1 \end{cases} \quad \text{and} \quad \beta(x) = \begin{cases} \frac{1}{4} : 0 \le x \le 1/2 \\ x^2 : 1/2 \le x \le 1 \end{cases}$$

Then $d(\alpha, \beta) =$

- A) 0
- B) 1
- C) 1/4
- D) ³/₄
- 71. Let τ be the topology on the reals R for which $\{(-\infty, a) : a > 0\}$ is a base. Let (a_n) , (b_n) be sequences where $a_n = (-1)^n$ and $b_n = (-1)^n + 1$. Then which of the following is true in (X, τ) .
 - A) (a_n) converges to 1 and (b_n) converges to 2
 - B) (a_n) converges to -1 and (b_n) converges to 2
 - C) (a_n) converges to 1 and (b_n) converges to 0
 - D) (a_n) converges to -1 and (b_n) converges to 0

	A) f can be both one to one and onto B) f can be one to one and not onto C) f can be onto but not one to one D) f can not be one to one and can not be onto	
73.	Let X be the real line with usual topology and $Y = \mathbb{R}$ with discrete topology. Which of to following $f: X \times Y \to X \times Y$ is continuous? A) $f(x,y) = (x+y,x+y)$ B) $f(x,y) = (x+y,y)$ C) $f(x,y) = (x+1,x)$ D) $f(x,y) = (x,x+1)$	he
74.	Let $e = (1, 1, 1,)$ and $f = (1, \frac{1}{2}, \frac{1}{3},)$ be sequences. With the usual notations which of the following is true. A) $e \in l^1$ and $f \in l^1$ B) $e \in l^1$ and $f \in l^\infty$ C) $e \in l^\infty$ and $f \in l^2$ D) $e \in l^\infty$ and $f \in l^1$	of
75.	Let <i>X</i> be the normal linear space \mathbb{R}^3 with norm $\ \ _2$ and $Y = \{ (0, y, z) : y, z \in R \}$. Let $F : X/Y \to X$ be defined by $F((x, y, z) + Y) = (x, 0, 0)$. Then $\ F \ = A$. A) 0 B) 1 C) 2 D) $\frac{1}{2}$	
76.	Let $X = C^3$ be the normed linear space with norm $\ \ _2$. Let $F : X \to X$ be defined by $F(x,y,z) = (x,x+y,x+y+z)$. Then which of the following is not true. A) F is closed and continuous but not open B) F is closed and open but not continuous C) F is closed, continuous and open D) F is closed but not continuous and not open	
77.	Let X be the Hilbert space R^2 . Then the set orthogonal to the point $(1, 1)$ in R^2 is: A) The set of points on the straight lines $x = 0$ and $y = 0$. B) The set of points on the straight lines $x + y = 0$. C) The set of points on the straight lines $x - y = 0$. D) The set of points on the straight lines $x - y = 1$.	
78.	Let H be the Hilbert space and $x, y \in H$ be such that $ x = 7$ and $ y = 1$ and $ x + y = 8$. Then $ x - y = 8$. A) 6 B) 5 C) 4 D) $\sqrt{2}$	

Let $\mathbb R$ be the real line and $\mathbb Q$ be the subspace of rationals. Then which of the following is

true about a continuous function $f: \mathbb{R} \to \mathbb{Q}$

72.

79. Let $H = l^2$ be the complex Hilbert space and f be the linear functional defined by f(x(1), x(2), ...) = ix(1) - x(2). Let $e_n = (0, 0, ..., 0, 1, 0, ...)$ where 1 occurs in the nth position. Then which of the following is true.

A)
$$\sum_{n=1}^{\infty} |f(e_n)|^2 \le \sqrt{2}$$
 B) $\sum_{n=1}^{\infty} |f(e_n)|^2 \le 2$

C)
$$\sum_{n=1}^{\infty} |f(e_n)|^2 \le 1$$
 D) $\sum_{n=1}^{\infty} |f(e_n)|^2 \le \frac{1}{2}$

- 80. Let H be the complex Hilbert space C^3 and the operator T on H be represented by the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -1 \end{bmatrix}$. Then which of the following is true.
 - A) T is self adjoint and unitary
 - B) T is not self adjoint and not unitary
 - C) T is self adjoint but not unitary
 - D) T is unitary but not self adjoint