17224

(A)

(B)

1.	Which of the following formulae for oscillatory motion is wrong on dimensional grounds? ($y = displacement$, $a = amplitude$, $t = time$, $T = period$, $v = frequency$, $\omega = angular$ frequency, $\lambda = wavelength$)								
	A)	$y = 2a \cos \theta$	$\left[2\pi\left(\frac{t}{T}-\right)\right]$	$\left(\frac{x}{\lambda}\right)$	B)	y =	a cos (2πνt)	
	C)	$y = \frac{a}{\sqrt{3}}(co)$	sωt + sir	ıωt)	D)	y =	$\frac{a}{\lambda}$ sin $(2\pi \frac{t}{T})$	I	
2.	Which $\vec{B} =$	h of the follow $\hat{i} + \hat{j} - 2\hat{k}$?	ving vecto	ors is pa	arallel to	o the re	sultant of \vec{A}	$= 2 \hat{i} - 4$	$\hat{f} + \hat{k}$ and
	A)	$3\hat{1} - 3\hat{1} - 2\hat{1}$	2ƙ		B)	6 î –	6 î — 2k		
	C)	$\hat{i} - \hat{j} + \hat{k}$			D)	6 î —	6 ĵ + 2 k		
3.	Whiel	h of the follow	ring is a s	olution	of the	Laplace	's equation	$\nabla^2 u = 0?$	
	A)	$u = \frac{1}{r}$	_		B)	u = r	2		
	C)	$u = x^2 y^2 -$	$+ z^2$		D)	u = r	$^{2}\sin\theta + \cos\theta$	Ø	
4	IfĂa	and \vec{B} are irrot	ational A	$\mathbf{x} \mathbf{\vec{B}}$ is	1				
	A)	irrotational			B)	solen	oidal		
	C)	irrotational a	and soleno	oidal	D)	neithe	er irrotationa	l nor sole	noidal
5.	The e	eigen values of	f the matr	$\operatorname{rix} \begin{pmatrix} 0 \\ i \end{pmatrix}$	$\binom{-i}{0}$ a	re			
	A)	(1, 1)	B)	(1, -1)		C)	(1, 0)	D)	(0, 0)
6.	The n	umber of inde	pendent c	compon	ents of	a symn	netric second	l rank ten	sor in 4 -dimensions is
	A)	16	B)	12		C)	10	D)	8
7.	Whicl where	h of the follow k is a positive	ring graph e constant	ns repre t?	esents th	ne solut	ion of the di	fferential	equation $\frac{dy}{dx} = -ky$
y		y ↓ x		• x	y		y x		× x

(C)

(D)

8. If the function $f(x) = x^4$ is expanded as a Fourier series in the interval $[-\pi, \pi]$, the first term of the series is

A)
$$\frac{\pi^2}{3}$$
 B) $\frac{\pi^4}{5}$ C) $\frac{2\pi^2}{3}$ D) $\frac{2\pi^4}{5}$

9. The Laplace transform of $f(t) = e^{at}$ for s > a is given by F(s) =

A)
$$\frac{1}{s}$$
 B) $\frac{1}{a}$ C) $\frac{1}{s-a}$ D) $\frac{1}{s+a}$

10. The value of the integral $\int_0^\infty [\sin(3x) + 4] \delta\left(x - \frac{\pi}{2}\right) dx =$

- 11. The derivative of a function f(z) of a complex variable z governs
 - A) the local behaviour of f(z)
 - B) the distant behaviour of f(z)
 - C) not only the local behaviour but also the distant behaviour of f(z)
 - D) neither the local nor the distant behaviour of f(z)

12. The value of the integral
$$I = \oint_C \frac{dz}{(z-3)}$$
 where C is the circle $|z| = 4$ is
A) 0 B) $2\pi i$ C) $4\pi i$ D) $8\pi i$

13. The generating function of Legendre polynomials $P_n(x)$ is

A)
$$g(t,x) = (1 - 2xt + t^2)^{-1/2}, |t| < 1$$

B)
$$g(t,x) = (1 + 2xt + t^2)^{-1/2}, |t| < 1$$

C)
$$g(t,x) = (1 + 2xt + t^2)^{1/2}, |t| < 1$$

- D) $g(t, x) = e^{-t^2 + 2tx}$
- 14. Sixty tickets are marked 1, 2, 3,, 60. From these, five tickets are picked at random and are given one each to five persons A, B, C, D and E. What is the probability that A gets the ticket with the largest number (among A, B, C, D and E) and B gets the ticket with the smallest number (among A, B, C, D and E)?

A)
$$\frac{1}{5}$$
 B) $\frac{1}{20}$ C) $\frac{1}{60}$ D) $\frac{1}{9}$

15. The acceleration-time graph of a particle starting from rest at time t = 0 and moving along a straight line is shown in the diagram. The displacement of the particle from t = 0 to t = 3s is

16. Two masses m and 2m are moving in the x-y plane with speeds u and 2u respectively as shown in the figure. They collide at P and stick together and move. Their common velocity after collision would be

17. Two bodies of masses m and 3m are connected by a spring of spring constant k. The frequency of the normal mode is

A)
$$\sqrt{\frac{3k}{4m}}$$
 B) $\sqrt{\frac{m}{k}}$ C) $\sqrt{\frac{k}{4m}}$ D) $\sqrt{\frac{4k}{3m}}$

18. Forces 10 N, 20 N and F act along the sides of an equilateral triangle PQR of side 5 cm as shown in the figure. C is the centroid of the triangle. What is the value of F in order that the net torque about C is zero?

- 19. An observer in a spacecraft moving at 0.8c relative to the earth finds that a train takes 20 minutes to run from station A to station B. The corresponding time as measured by the driver of the train is
 - A) 20 minutes B) 33.3 minutes 16 minutes C) 12 minutes D)
- A particle is placed in a region where the potential is $V(x) = \frac{1}{2}kx^2 + \frac{1}{3}\lambda x^3$ where 20. k > 0 and $\lambda > 0$. Then
 - x = 0 and $x = -\frac{k}{\lambda}$ are points of stable equilibrium x = 0 and $x = -\frac{k}{\lambda}$ are points of unstable equilibrium A)
 - B)
 - x = 0 is a point of stable equilibrium and $x = -\frac{k}{\lambda}$ is a point of unstable C) equilibrium

x = 0 is a point of unstable equilibrium and $x = -\frac{k}{\lambda}$ is a point of stable D) equilibrium

21. Group A contains some important discoveries in Physics. Group B contains the years of these discoveries. Match the discoveries with the year of discoveries.

	Group A	Gro	up B
a.	Quantum physics	(i)	1895
b.	X- rays	(ii)	1928
c.	Quantum theory of photoelectric effect	(iii)	1900
d.	Raman effect.	(iv)	1905
		. ,	

A)
$$a \rightarrow iii, b \rightarrow i, c \rightarrow iv, d \rightarrow ii$$

B)
$$a \rightarrow iv, b \rightarrow i, c \rightarrow ii, d \rightarrow iii$$

C)
$$a \rightarrow ii, b \rightarrow iii, c \rightarrow iv, d \rightarrow i$$

D) $a \rightarrow i, b \rightarrow ii, c \rightarrow iv, d \rightarrow iii$

22. The Lagrangian of a particle of mass m, attached to a fixed point O by a weightless inextensible string of length, 1 and rotating in a horizontal plane under gravity as shown in the figure is given by $L = \frac{1}{2} ml^2 (\dot{\theta}^2 + \sin^2 \theta \, \dot{\phi}^2) - mglcos\theta$. The Hamiltonian of the particle is given by

A) $H = \frac{1}{2ml^2} \left(p_{\theta}^2 + \frac{p_{\phi}^2}{\sin^2 \theta} \right) + mgl\cos\theta$

B)
$$H = \frac{1}{2ml^2} \left(p_{\theta}^2 + \frac{p_{\phi}^2}{\sin^2 \theta} \right) - mgl\cos\theta$$

C)
$$H = \frac{1}{2ml^2}(p_{\theta}^2 + p_{\phi}^2) + mglcos\theta$$

D)
$$H = \frac{1}{2ml^2} (p_{\theta}^2 + p_{\phi}^2) - mglcos\theta$$

- 23. Which of the following statements is WRONG regarding phase space of a dynamical system?
 - A) For a system with n degrees of freedom, the phase space is 2n dimensional
 - B) The distribution function is constant along any trajectory in phase space
 - C) The phase space trajectories of a system can intersect each other
 - D) The phase curves of a simple pendulum for small amplitudes are ellipses
- 24. For a system with one degree of freedom, the unit of phase volume is

A)
$$m^3$$
 B) m^2 C) J s D) J s⁻¹

- 25. Which of the following statements is CORRECT regarding motion under central forces?
 A) Linear momentum is conserved B) Angular momentum is conserved
 C) Orbits are always elliptical D). Total energy is always negative
 - C) Orbits are always elliptical D) Total energy is always negative
- 26. Identify the CORRECT statement:
 - A) In cyclones, high speed winds circulate around a high pressure region
 - B) The wind direction in cyclones is clockwise in both hemispheres
 - C) The wind direction in cyclones is clockwise in southern hemisphere and anticlockwise in northern hemisphere
 - D) The wind direction in cyclones is anticlockwise in southern hemisphere and clockwise in northern hemisphere

- 27. What should be the velocity of a neutron (mass = 1.67×10^{-27} kg) in order that its de Broglie wavelength is 0.28 nm? A) 2.37 m s⁻¹ B) 1.42 km s⁻¹ C) 1.42 m s⁻¹ D) 2.37 km s⁻¹
- 28. The wave function of a particle constrained to move along the x-axis with $0 \le x \le L$ is given by $\psi(x) = \sqrt{\frac{2}{L}} \sin(\frac{n\pi x}{L})$, *n* being an integer. The expectation value of its momentum will be $n\pi h$ ($n\pi h$)² $n^{2}\pi$
 - A) $\frac{n\pi\hbar}{L^2}$ B) $\left(\frac{n\pi\hbar}{L}\right)^2$ C) $\frac{n^2\pi}{L^2}$ D) 0
- 29. Which of the following relations is CORRECT?

A)
$$[\widehat{p}, \ \hat{x}] = i\hbar$$
B) $[\widehat{p}, \ \hat{x}] = \frac{h}{i}$ C) $[\widehat{p}, \ \hat{x}] = \frac{1}{i\hbar}$ D) $[\widehat{p}, \ \hat{x}] = -\frac{1}{i\hbar}$

- 30. A proton and an electron with the same energy E approach a potential barrier whose height is greater than E. Then the probability of penetration through the barrier is
 - A) higher for the proton than for the electron
 - B) smaller for the proton than for the electron
 - C) same for the proton and the electron
 - D) 1836 times higher for the proton than for the electron

31. A particle is moving in a potential V(x) =
$$\frac{1}{2}m\omega^2 x^2$$

The energy eigen values of the particle are (n is an integer)

A) $E_n = \left(2n + \frac{3}{2}\right)\hbar\omega$, B) $E_n = \left(n + \frac{1}{2}\right)\hbar\omega$

C)
$$E_n = (2n + \frac{1}{2})\hbar\omega$$
 D) $E_n = n\hbar\omega$

32. The commutator $[p^2, x^2] =$ A) $-2i\hbar xp$ B) $-2i\hbar px$ C) $-2i\hbar (xp + px)$ D) $2i\hbar (xp - px)$

33. A particle of mass *m* is subjected to a potential $V(x) = \begin{cases} -V_0 \text{ for } 0 < x < L \\ 0 \text{ for } x < 0 \text{ and } x > L \end{cases}$

In order that there is at least one bound state,

A)
$$V_0 \ge \frac{\hbar^2 \pi^2}{2mL^2}$$
 B) $V_0 \ge \frac{\hbar^2 \pi^2}{4mL^2}$ C) $V_0 < \frac{\hbar^2 \pi^2}{2mL^2}$ D) $V_0 \ge \frac{8\hbar^2 \pi^2}{mL^2}$

- The vectors $|n\rangle$, n = 1, 2, 3, --- constitute a complete orthonormal basis. Then which of the 34. following statements is WRONG?
 - Any arbitrary vector $|\alpha\rangle$ can be expanded as $|\alpha\rangle = \sum_{n} C_{n} |n\rangle$ Any arbitrary vector $|\alpha\rangle$ can be written as $|\alpha\rangle = \sum_{n} \langle n | \alpha \rangle$ A)
 - B)
 - $\sum_{n} |n\rangle \langle n| = I$, the identity operator C)
 - $\langle m|n\rangle = \delta_{mn}$ D)

The ground state wave function of hydrogen atom is $\psi = \frac{e^{-r/a_0}}{\sqrt{\pi}a_-^{3/2}}$, then the 35.

expectation value of $\frac{1}{r}$ in this state is

1 B) C) $1/a_0$ D) a_0^2 A) a_0

- A particle is in the simultaneous eigen state $|l, m\rangle$ of the orbital angular momentum operators 36. L^2 and L_z with eigen values $l(l+1)\hbar^2$ and m respectively. Then the expectation value of L_v^2 of the particle in this state satisfies
 - A) $0 \le \langle L_v^2 \rangle \le l^2 \hbar^2$
 - B) $0 \le \langle L_y^2 \rangle \le \frac{1}{2}l(l+1)\hbar^2$
 - C) $\frac{1}{2}m^2\hbar^2 \le \langle L_y^2 \rangle \le \frac{1}{2}l(l+1)\hbar^2$ D) $\langle L_y^2 \rangle = 0$

37. Which of the following statements is TRUE for Heisenberg picture of quantum dynamics? Both operators and state vectors change with time A)

- The operator that effects time translation of state kets is $e^{-\frac{Rt}{\hbar}}$ B)
- C) Operators do not change with time
- Operators change with time according to the relation $\frac{d\widehat{A}}{dt} = \frac{1}{i\hbar} [\widehat{A}, \widehat{H}]$ D)
- 38. Group A contains some important theories in Physics. Group B contains the names of the scientists who proposed these theories. Match the discoveries with the name of the scientist who proposed the theories.

	Group A			Group B
a.	Topological phase transitio	n	i	Murray Gell-Man
b.	Big bang nucleosynthesis.		ii	D. J. Thouless
c.	Black hole radiation		iii	George Gamow
d.	Quarks structure of hadro	ns	iv	Stephen Hawking
A)	$a \rightarrow i, b \rightarrow iii, c \rightarrow iv, d \rightarrow ii$	B)	a→ i	i, $b \rightarrow iii$, $c \rightarrow iv$, $d \rightarrow i$
C)	$a \rightarrow i, b \rightarrow iv, c \rightarrow ii, d \rightarrow iii$	D)	$a \rightarrow$	iii, $b \rightarrow iv$, $c \rightarrow i$, $d \rightarrow ii$

- 39. Fermi's golden rule is NOT concerned with
 - A) harmonic perturbation
 - B) transition probability
 - C) time independent perturbation
 - D) molecular systems
- 40. In an elastic scattering of particles in l = 0 state, the incident wave vector is of magnitude $\sqrt{\pi}$ fm⁻¹ and the phase shift is 90⁰. The total scattering cross section is A) 0.04 barn B) 0.4 barn C) 4 barn D) 400 barn
- 41. An ideal diatomic gas is subjected to three successive reversible processes and figure shows the corresponding P-V diagram. AB represents an adiabatic expansion and CA represents an isothermal compression. Then which of the following statements is TRUE regarding entropy changes?

- A) The entropy of the gas remains constant during each of the processes
- B) The entropy of the surroundings remains constant during each of the processes
- C) The combined entropy of the gas and the surroundings remains constant during each of the processes
- D) For the complete cycle, the combined entropy of the gas and the surroundings increases.
- 42. Which of the following sets of Maxwell's thermodynamic relations is WRONG? (U- internal energy, H- enthalpy, G- Gibbs free energy, F- Helmholtz free energy)

A)
$$T = \left(\frac{\partial U}{\partial S}\right)_V$$
; $P = -\left(\frac{\partial U}{\partial V}\right)_S$ B) $T = \left(\frac{\partial H}{\partial S}\right)_V$; $V = -\left(\frac{\partial H}{\partial P}\right)_S$

C)
$$S = -\left(\frac{\partial F}{\partial T}\right)_V$$
; $P = -\left(\frac{\partial F}{\partial V}\right)_T$ D) $S = -\left(\frac{\partial G}{\partial T}\right)_P$; $V = \left(\frac{\partial G}{\partial P}\right)_T$

43. An ideal gas is having a volume V_0 at temperature T. Its isothermal compressibility (κ) is given by

A)
$$-\frac{1}{V_0} \left(\frac{\partial V}{\partial P}\right)_T$$
 B) $\frac{1}{V_0} \left(\frac{\partial V}{\partial P}\right)_T$ C) $-V_0 \left(\frac{\partial P}{\partial V}\right)_T$ D) $V_0 \left(\frac{\partial P}{\partial V}\right)_T$

44.	A system has four energy levels with energies 0 , ε , 2ε and 3ε . Of these, the levels ε and 2ε are three-fold degenerate and the other two levels are non-degenerate. The partition function								
	ofthe	e system with eta	$=\frac{1}{k_{\rm p}T}$	is give	n by				
	A)	$1+e^{-3\beta\epsilon}$	KB I		B)	3(e ^{-βε}	$+ e^{-2\beta\epsilon}$)		
	C)	$1+e^{-\beta\varepsilon}+e^{-2}$	$\beta \epsilon + e^{-2}$	3βε	D)	(1+6	$e^{-\beta\varepsilon})^3$		
45.	Two i placed	identical system d in thermal cor	s at the tract. T	same te he entro	emperation of the second se	ure and ne comb	each having th	e initial ill be	entropy S are
	A)	S ²	B)	25		C)	$\frac{1}{2}$ S	D)	S In2
46.	Two s respec	spherical black to the state s	bodies A o of the	A and B total po	of radii	i R and hitted by	3R are kept at them is given	tempera by $\frac{P_A}{P_P}$:	tures 2T and T
	A)	$\frac{4}{81}$	B)	$\frac{81}{4}$		C)	$\frac{16}{9}$	D)	$\frac{9}{16}$
47.	The b surfac	orightest part of ce temperature c	the spec of the sta	etrum of ar is	f a certa	in star i	s located at a w	vaveleng	gth of 290 nm. The
	A)	10 ⁶ K	B)	10 ⁴ K		C)	10 ⁵ K	D)	10 ⁷ K
48.	In the of the	e case of Maxwe e r.m.s. velocity	llian dis to the n	stributio nost pro	on of ve bable ve	locity o elocity i	f the molecules	s of an i	deal gas, the ratio
	A)	<u>3</u> 2	B)	$\sqrt{\frac{2}{3}}$		C)	$\sqrt{\frac{8}{3}}$	D)	$\sqrt{\frac{3}{2}}$
49.	Which A)	h of the followin liquid He ³	ng will (B)	obey Fe photoi	ermi-Dir 1s	cac statis C)	stics? Cooper pairs	D)	liquid He ⁴
50.	Bose- is the conde state i	Einstein conder temperature at ensation? Assum is 1000 times sn	nsation of which a ne that in naller th	occurs i sample t is a pe an that	n liquid of He ⁴ rfect Bo in the li	He ⁴ kep in gased ose gas a quid sta	pt under suitable ous state will u and the particle ate.	le press ndergo density	ure at 2.17K. What Bose-Einstein v in the gaseous
	A)	2.17 K	B)	2.17 n	пK	C)	21.7 mK	D)	21.7 K
51.	Figur x-y pl	e shows two equ lane. The x- and	uipotent y-com	ial lines	s associa E_x and	ated wit E _y of th	h a uniform ele ne field in the ro	ectric fie	eld existing in the etween the lines are
			cm) ²				V = 4 volt V = 6 volt		
							\neq		

- 4
 $$\begin{split} E_x &= -100 \text{ Vm}^{-1}, \ E_y &= +200 \text{ Vm}^{-1} \\ E_x &= +100 \text{ Vm}^{-1}, \ E_y &= -200 \text{ Vm}^{-1} \\ E_x &= +200 \text{ Vm}^{-1}, \ E_y &= +100 \text{ Vm}^{-1} \\ E_x &= -200 \text{ Vm}^{-1}, \ E_y &= -100 \text{ Vm}^{-1} \end{split}$$
- A) B)
- C)
- D)

6 x (cm)

2

- 52. The frequency of revolution of charged particles in a cyclotron is independent of the
 - mass of the particle B) charge of the particle
 - C) speed of the particle D) strength of the magnetic field
- 53. In the figure shown below, a current of 2.1 A enters the bridge circuit. The current in the 8 Ω resistor is

- 54. In a certain region, there exists a uniform electric field and a uniform magnetic field in the same direction. A electron is projected into this region with a velocity in the same direction as the fields. Inside the region,
 - A) the electron will deflect to its left

A)

- B) the electron will deflect to its right
- C) the speed of the electron will increase
- D) the speed of the electron will decrease
- 55. The capacitor shown in the circuit is fully charged initially. After closing the switch S, the time taken for the energy stored in the capacitor to get reduced to half its initial value is

- 56. The law which enables to calculate the magnetic field at any point in the region around a current carrying conductor is
 - A) Gauss's law B) Biot-Savart law
 - C) Faraday's law D) Lenz's law

57. The magnetic field of a plane electromagnetic wave is given by

 $\vec{B}(x, y, z, t) = \hat{k} B_0 \sin \left[\frac{k}{\sqrt{2}}(x + y) + \omega t\right]$ where k is the wave number and $\hat{i}, \hat{j}, \hat{k}$ are the unit vectors along the x, y and z-directions. The electric field associated with the wave is given by

A)
$$\vec{E}(x, y, z, t) = \hat{i} cB_0 sin \left[\frac{k}{\sqrt{2}}(x+y) + \omega t\right]$$

B)
$$\vec{E}(x, y, z, t) = \hat{j} cB_0 sin \left[\frac{k}{\sqrt{2}}(x+y) + \omega t\right]$$

C)
$$\vec{E}(x, y, z, t) = \frac{(\hat{i} - \hat{j})}{\sqrt{2}} cB_0 \sin\left[\frac{k}{\sqrt{2}}(x + y) + \omega t\right]$$

D)
$$\vec{E}(x, y, z, t) = \frac{(\hat{i} + \hat{j})}{\sqrt{2}} cB_0 \sin\left[\frac{k}{\sqrt{2}}(x + y) + \omega t\right]$$

58. Group A contains some important discoveries in Physics. Group B contains the names of the scientists who made these discoveries. Match the discoveries with the name(s) of the scientists who discovered it.

	Group A		Group B		
a)	Transistors	(i)	J. Chadwick		
b)	LASER (ii)		A. Penzias and R. Wilson		
c)	CMBR (iii)		Theodore H. Maiman		
d)	Neutron	(iv)	Shockley, Bardeen and Brattain		
A)	$a \rightarrow ii, b \rightarrow iv, c \rightarrow i, c$	1 → iii	B) $a \rightarrow iii, b \rightarrow ii, c \rightarrow i, d \rightarrow iv$		
Ć	$a \rightarrow iv, b \rightarrow iii, c \rightarrow ii$	$d \rightarrow i$	D) $a \rightarrow iii, b \rightarrow i, c \rightarrow ii, d \rightarrow iv$		

59. Corresponding to the equation $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$ in electrostatics, the equation valid in magnetic case is

A)	$\vec{B} = _{0}\vec{H} + \vec{M}$	B)	$\vec{H} = \frac{1}{\vec{B}} - \vec{M}$
C)	$\vec{B} = \vec{H} - \vec{M}$	D)	$\vec{B} = \int_{0}^{0} \vec{M} + \vec{H}$

- 60. In a Michelson interferometer arrangement, when one of the mirrors is moved by a distance of 0.08mm, 250 fringes cross the field of view. The wavelength of the source is A) 640 Å B) 3200 Å C) 6400 mm D) 6400 Å
- 61. The total power radiated by an oscillating electric dipole is
 - A) inversely proportional to the dipole moment
 - B) inversely proportional to the frequency of oscillation
 - C) directly proportional to the fourth power of the frequency of oscillation
 - D) independent of the frequency of oscillation

A)

- 62. A right circularly polarised light beam is incident normally on a calcite half-wave plate. Then the emergent beam is
 - right circularly polarised B) left circularly polarised
 - C) right elliptically polarised D) left elliptically polarised

63.	When flow is	a plane electro that of	magneti	c wave	propag	ates thro	ough a dielectri	ic, the d	irection of energy
	A)	$\vec{k} \times \vec{H}$	B)	$\vec{k} \times \vec{E}$	÷ i	C)	$\vec{E} \times \vec{H}$	D)	$\vec{H} \times \vec{E}$
64.	Two 1 perpen $y = y_0$	harmonic wav dicular direction $sin (\omega t - kz - \frac{3}{2}\pi)$	tes having the having	ng the epreser hese tw $\frac{1}{2}\pi$	same nted by to toget	frequence $x = x_0$ for can be calculated as $x = x_0$.	hey, but with $\sin (\omega t - kz)$ constitute a pla $\frac{1}{2}\pi$	displae and ne polar	cements in mutually rised wave if $\varphi = 0$
	A)	2	D)	2		0)	4 <i>n</i>	D)	0
65.	10 KeV A) C)	V photons belo microwaves ultra violet ra	ng to ys		B) D)	infra re X-rays	ed rays		
66.	The ele degene	ectron configur eracy of the sta	ration of te is	`an exc	ited sta	te of nit	rogen atom is 1	$s^{2} 2s^{2} 2$	$2p^2 3d^1$. The
	A)	10	B)	15		C)	6	D)	5
67.	The in temper	tensity ratio of rature is	$D_1 (\lambda =$	589.6	nm) and	$d D_2 (\lambda =$	= 589.0 nm) lir	nes of Se	odium at high
	A)	3:1	B)	1:2		C)	1:1	D)	3:2
68.	An ato radiati A)	om undergoes a on. The natural 10 ⁻¹⁰ eV	transitio l line wie B)	on from dth of t 10 ⁻⁸ eV	n a state he spec √	whose tral line C)	life time is 1 n emitted is of th 10 ⁻⁶ eV	anoseco he order D)	ond and emits of 10 ⁻³ eV
69.	The m wavele A)	inimum magne ength 500 nm to 0.857 T	etic field o be obs B)	require erved v 1.34 T	ed for th with a sp	ne norma pectrom C)	al Zeeman split eter having a re 0.26 T	tting of esolution D)	a spectral line of n of 0.01 nm is 0.587 T
70.	The nu electro	umber of spectr	al terms	resulti	ng fron	n the j-j	coupling of a 3	p electr	on and a 3d
	A)	15	B)	12		C)	10	D)	9
71.	A diate and rot $J \le 2$ transiti	pomic molecule tational quantu and subject to ions, the energy (n, 1) = (0, 0)	undergo m numb the selec y involve) $\rightarrow (1)$	bes a vil ers of t etion ru ed is lan	brationation he initiation lles Δv rgest fo B)	al-rotation al and fi = ± 1 ; $\angle z$ r (ν I) =	onal transition is nal states are re $\Delta J = 0, \pm 1$. And $= (0, 0) \rightarrow (1, 1)$	in which estricted mong th	the vibrational to $v \leq 1$ and allowed
	C)	(v, J) = (0, 1)	$) \rightarrow (1,1)$)	D)	(v, J) = (v, J) =	$(0,0) \to (1,1)$ = $(0,1) \to (1,2)$	2)	
72.	The nu A)	umber of norma	al modes B)	of vib 12	ration p	ossible C)	for C_6H_6 molec 31	cule is D)	30
73.	Which	of the followin	ng moleo	cules D	OES N	JOT ha	ve a microwave	e spectr	um?
	A)	BCl ₃	B)	CH ₄		C)	CH ₃ F	D)	OCS

74.	4. A He-Ne laser cavity consists of two mirrors of reflectivities 1 and 0.98, separated by a distance of 30 cm. The medium between the mirrors has refractive index = 1 and absorption coefficient = 0. The separation between the longitudinal modes of the cavity is									
	A)	750 MHz	B) 50	00 MHz	r the r	C)	250	MHz	D)	750 kHz
75.	Which A)	h of the follow: ¹⁰ B	ing nuclei B) ¹	DOES I ⁴ N	NOT	posses C)	s NMF ⁴ He	R spectru	m? D)	¹³ C
76.	The ro of the respec	otational consta IR spectrum of ctively	nt of CO ₂ 1 f ${}^{16}0 - {}^{12}$	molecul ${}^{2}C - {}^{16}C$	e is E Omc	B. Then blecule	n the li and ¹	ne-spacii ⁸ 0 – ¹² (ng in the $C - {}^{16}O$	e P and R branches molecule are
	A)	2B and 2B	B) 21	B and 4	В	C)	4B a	nd 2B	D)	2B and B
77.	The sp of N_2	bectrum which molecule is	enables the	e detern	ninati	on of r	nomer	nt of iner	tia and ł	oond force constant
	A) C)	electronic spe microwave sp	ectrum ectrum	B D)	infra 1 ESR s	red spe spectru	ctrum Im		
78.	Which A) B) C) D)	n of the followi The radiation is initially abs The radiation compared to t The radiation absorbed radi The emission absorption	ng stateme emitted by sorbed emitted by he frequen emitted by ation takes place	nts is T the mc the mc cy of th the mc e with a	RUE blecul blecul blecul blecul	regard le has t le cont sorbed le is of e delay	ling flu he san ains bo radiati lower of mir	norescence ne freque oth highe on frequence nutes or e	ce? ency as t r and lo cy as co even hou	the radiation which wer frequencies as mpared to the urs after the initial
79.	Exam A)	tiple of mirror $^{14}N_7$ and $^{13}N_7$	nuclei is N ₇	В)	$^{13}N_{7}$	and	$^{13}C_{6}$		
	C)	$^{12}C_6$ and $^{13}C_6$	\mathbb{C}_6	D)	$^{13}N_{7}$	and	$^{12}C_{6}$		
80.	Group field/in a. b. c. d. d. A) C)	• A contains nteractions. M Group A Phonons Plasmons Magnons Gluons $a \rightarrow iii, b \rightarrow iv,$ $a \rightarrow iii, b \rightarrow i,$	elementary atch these (i) (i) (i) (i) (i) (i) (i) (i) (i) (i)	v excita excitation () sp (i) m (ii) la (v) pl (v) pl (v) B (v) B	tions, ons/b Froup oin watediat ttice lasma	/boson osons B aves. re stron vibrati a oscilla $a \rightarrow i v$ $a \rightarrow i v$	s. Growith the second	bup B contained by the field	ontains ds/intera → i , d → i	the associated actions.
81.	Nucleo	on-nucleon inte	eraction is							
	A)	charge depend	dent	B)	spin i	ndeper	ndent		
	C)	charge indepe	endent	D)	charge	e asyn	nmetric		

82.	Which one of the following reactions can occur A) $\Lambda^0 \rightarrow \pi^+ + \pi^-$ B) $\pi^- + p \rightarrow n + \pi^0$ C) $\pi^+ + p \rightarrow \pi^+ + p + \pi^- + \pi^0$ D) $\gamma + n \rightarrow \pi^+ + p$				
83.	 The significance of Co⁶⁰ experiment is that it supports A) energy conservation in alpha decay B) upholds the law of conservation of parity in beta decay C) charge conservation in elementary particle interaction D) breakdown of the conservation of parity in beta decay 				
84.	 Which one of the following is used as moderator in a nuclear reactor A) Heavy water B) Diamond C) U²³³ D) Liquid metal 				
85.	The binding energy of the neon isotope $_{10}$ Ne ²⁰ is 160.65 MeV, and then its atomic mass is A) 19.99u B) 29.99u C) 9.99u D) 23.99u				
86.	The a positron is A)2.04 MeVB)1.02 keVC)1.02 eVD)1.02 MeV				
87.	 Pauli proposed the existence of neutrinos to: A) explain conservation of energy in alpha decay. B) explain parity violation in beta decay C) explain conservation of energy in beta decay. D) explain conservation of strangeness in beta decay. 				
88.	 Geiger-Nuttall rule expresses a relationship between A) the logarithm of the disintegration constant and that of decay energy B) the disintegration constant and square of the decay energy C) the disintegration constant and the number of atoms D) the parent nuclei and the daughter nuclei. 				
89.	The quark structure of proton is A) udd B) uud C) us D) $u\bar{d}$				
90.	Identify the missing element in the following reaction: ${}_{1}\text{H}^{3} + {}_{1}\text{H}^{1} \rightarrow ? + {}_{0}n^{1}$				
	A) $_1H^3$ B) $_2He^4$ C) $_2He^3$ D) $_0n^1$				
91.	 Neutrino oscillation implies A) neutron decay B) that neutrinos are mass less C) proton decay D) existence of a non zero value for the mass of the neutrinos 				

- 92. As per Fermi-Dirac distribution, what is the probability of occupation of electron at the Fermi level at a finite temperature?
 - 0.5 % C) 50 % A) 70.71 % B) D) 100 %
- 93. Consider a superconducting ring placed in a magnetic field, then
 - no magnetic field exists inside the ring A)
 - B) no remarkable property happens
 - magnetic field does not exist outside the ring C)
 - D) the magnetic flux that passes through the ring gets quantized
- 94. Choose the correct statement
 - A superconductor does not show diamagnetic properties A)
 - To destroy Type I superconductivity a large magnetic field is required B)
 - At the transition from normal state to a superconducting state specific heat C) of the specimen continuously changes
 - Type II superconductors find more practical applications than Type I D)
- 95. Hall resistance is given by

A)
$$\rho_{H} = \frac{E_y}{j_x}$$
 B) $\rho_{H} = \frac{E_y}{j_y}$ C) $\rho_{H} = E_y j_x$ D) $R_H = \frac{E_y}{j_x B}$

96.	The s	space lattice of	NaCl	crystal is				
	A)	hexagonal	B)	fcc	C)	sc	D)	bcc

- 97. If d is the interplanar spacing, Bragg reflection can occur only for wavelength λ A) $\geq 2d$ B) < d C) $\leq 2d$ D) = d/2
- 98 Choose the correct statement:
 - A colour centre is a lattice defect which emits visible light A)
 - A colour centre is a lattice defect which absorbs visible light B)
 - A colour centre is a lattice defect which emits infrared light C)
 - A colour centre is a lattice defect which absorbs phonons D)
- Weidemann-Franz law says that, if K is thermal conductivity and σ is the 99. electrical conductivity, T the temperature then
 - $\frac{K}{\sigma T}$ is the same for all metals K σ is the same for all metals A)
 - B)
 - $\frac{K}{\sigma T^2}$ is the same for all metals K σ T is the same for all metals C)
 - D)
- 100. Choose the correct statement:
 - Only ferroelectric crystals show piezoelectric effect A)
 - B) Ferroelectric crystals do not show piezoelectric effect
 - C) Ferroelectric crystals exhibit dipole moment only in the presence of an external electric field
 - A crystal may be piezoelectric without being ferroelectric. D)

101. Group A contains some important theories/observations in Physics. Group B contains the names of the scientists who predicted these theories/made observations. Match the discoveries with the name of the scientists who discovered it.

		Group A		Group B
	a.	Dark matter	i)	A Einstein
	b.	Gravitational waves	ii)	Klaus von Klitizing
	c.	Liquid helium	iii)	F. Zwicky
	d.	Quantum Hall Effect	iv)	H K Onnes
	A)	$a \rightarrow iii, b \rightarrow i, c \rightarrow iv, d \rightarrow ii$	B)	$a \rightarrow ii, b \rightarrow iv, c \rightarrow i, d \rightarrow iii$
	C)	$a \rightarrow iv, b \rightarrow iii, c \rightarrow i, d \rightarrow ii$	D)	$a \rightarrow iv, b \rightarrow i, c \rightarrow ii, d \rightarrow iii$
102.	If a i Brillo	is the primitive axis of the uin zone of a linear lattice	crystal lies a	lattice, the boundaries of the first t
	A)	$K = \pm \frac{2\pi}{a} B) \qquad K =$	$\pm\pi$	C) $K = \pm \frac{\pi}{a}$ D) $K = \pm \frac{\pi}{a^2}$
103.	The F 9.11 >	Thermi energy of sodium is 3.2×10^{-31} kg)	eV. The	e Fermi velocity is (mass of electron is
	A)	$0.5 \times 10^6 \text{ m/s}$ B) $1.1 \times$	10^6 m/s	C) 0.11×10^6 m/s D) 1.1×10^6 cm/s
104.	Group assoc	o A contains certain terms iated with these terms. Matc	in Physich the term	sics. Group B contains the topic/subject rms with the topic/subject
		Group A		Group B
	a.	Chandrasekhar limit	i)	Superconductivity
	b.	Cooper pairs	ii)	Bose-Einstein Condensation
	C.	Joule – Thomson cooling	iii)	White dwarf
	d.	Gross-Pitaevskii equation	iv)	Thermodynamics.
	A)	$a \rightarrow iii, b \rightarrow i, c \rightarrow iv, d \rightarrow ii$	B)	$a \rightarrow ii, b \rightarrow iv, c \rightarrow i, d \rightarrow iii$
	C)	$a \rightarrow iv, b \rightarrow ii, c \rightarrow i, d \rightarrow iii$	D)	$a \rightarrow ii, b \rightarrow i, c \rightarrow iv, d \rightarrow iii$

- 105. In the energy band diagram of silicon doped with arsenic, the Fermi level lies in the
 - A) middle of the forbidden gap
 - B) upper part of the forbidden gap
 - C) lower part of the forbidden gap
 - D) conduction band
- 106. Which of the following statements is TRUE regarding reverse saturation current (I_0) in diodes ?
 - A) In a silicon diode, I_0 is normally larger by a factor of about 1000 than that in a germanium diode of comparable ratings
 - B) For silicon diodes, I₀ is of the order of microamperes at room temperature
 - C) I_0 increases with temperature for germanium diodes while I_0 decreases with temperature for silicon diodes
 - D) I_0 increases with temperature for both silicon and germanium diodes

107. In the circuit shown below, the breakdown voltage of the Zener diode is 6 V. The load current and the Zener diode current are respectively given by

108. In the transistor biasing circuit shown below, $V_{BE} = 0.7$ V. The collector to ground voltage is given by

- 109. Which of the following statements is CORRECT for a common emitter amplifier circuit?
 - A) Both *p*-*n* junctions are forward biased
 - The output is taken from the emitter B)
 - C)
 - The output voltage is in phase with the input voltage There is a phase difference of 180° between the input and output voltages D)
- 110. When an n-channel MOSFET is operated in the enhancement mode, the gate voltage is kept

A)	zero	В)	positive
C)	negative	D)	positive or negative

111. A phase shift oscillator has a feedback network consisting of three identical RC sections with

 $R = 100 \text{ K}\Omega$ and $C = 0.01 \mu\text{F}$. The frequency of oscillations is

A) 65 Hz B) 130 Hz C) 160 Hz D) 650 Hz

- 112. Which of the following statements regarding op amps is NOT CORRECT ?
 - A) It uses direct coupling
 - B) Input impedance is high
 - C) Output impedance is high
 - D) Voltage gain can be adjusted using external resistors
- 113. For the circuit with the input waveform shown below, the output waveform is

114. Semiconductors of interest for making visible LED must have energy band gaps

A)	larger than 3.0 eV	B)	larger than 1.8 eV
C)	less than 1.8 eV	D)	less than 0.3 eV

115. Which of the following DOES NOT represent an exclusive OR operation for inputs A and B?

A)	(A + B)AB	B)	(A + B)(A + B)
C)	(A + B) AB	D)	$(A\overline{B} + B\overline{A})$

116. The output of a 12-bit digital to analog converter (DAC) varies from -10 V to +10V. Its voltage resolution is

- A) 5 mV B) 40 mV C) 100 mV D) 1 mV
- 117. The minimum number of flip-flops needed to construct a mod-200 counter is
 - A) 14 B) 7 C) 8 D) 9

In the digital circuit shown in the figure, the input C is always kept high. The entries in the 118. last column of its truth table from top to bottom are respectively

In a microprocessor, which bus is bidirectional? 119.

> Address bus Data bus A) B) C) Address bus and data bus

D) Address bus and control bus

120. Unlike microprocessors, microcontrollers make use of batteries because they have

- A) low voltage consumption B)
- low current consumption
- C) low power consumption
- D) high power consumption