17221

- 1. The number of one-to-one functions from the set {1, 2, 3, 4} to itself such that all the functions map 1 to 4 and 2 to 3 is
 - A) 1

- B) 2
- C) 3
- D) 4
- 2. Which of the following is an uncountable set? Here \mathbb{R} is the set of reals and \mathbb{Q} is the set of rationals?
 - A) $\{x \in \mathbb{R} : \text{integral part of } x \text{ is } 1\}$
 - B) $\{x \in \mathbb{R} : x^2 \text{ is rational}\}$
 - C) $\{x \in \mathbb{R} : x \ge 0 \text{ and } \sqrt{x} \text{ is rational}\}$
 - D) $\{x \in \mathbb{R} : x \ge 0 \text{ and } x + \sqrt{x} \text{ is an integer}\}$
- 3. Which of the following is a one to one function from the set \mathbb{Z} of integers to \mathbb{Z} ?
 - A) $f(x) = x^2 x$
- B) $f(x) = x^2 + x$ C) $f(x) = x^3 + x$ D) $f(x) = x^3 x$
- 4. Which of the following is a period of the function $f(x) = \sin\left(\frac{4x+1}{2\pi}\right)$?
 - A) π

- B) 2π
- C) π^2
- D) $2\pi^{2}$
- 5. Let θ be the angle between the lines 2x y + 1 = 0 and 3x y + 2 = 0. Then $\tan \theta =$
 - A) 1/5

- B) 2/3
- C) 3/7
- D) 1/7
- 6. At which among the following points the tangent to the parabola $y^2 = 4x$ has slope 1.
 - A) (2, 1)
- B) (1, 2)
- C) $(2, 2\sqrt{2})$ D) (4, 4)
- 7. The direction cosines of the line joining (1, 2, 1) and (2, 1, -1) are

- A) $\frac{1}{6}, \frac{-1}{6}, \frac{-2}{6}$ B) $\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}$ C) $\frac{1}{3}, \frac{-1}{3}, \frac{-2}{3}$ D) $\frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$
- 8. Which of the following is a plane perpendicular to the plane 2x 3y + z = 1?
 - A) 3x 2y z = 1

B) 3x + 2y + 2z = 1

C) 2x + 3y - z = 1

D) 2x + y - z = 1

- 9. The value of $\lim_{x\to 0} x \sin\left(1-\frac{1}{x}\right)$ is
 - A) 0

B) 1

C) -1

D) sin1

- 10. $\lim_{x\to 0} \frac{e^{2x}-e^x}{x} =$
 - A) 0

B) 1

- C) e
- D) e-1

- 11. The function $f(x) = \sin x + 2\cos x$ is
 - A) increasing in the interval $[0, \pi/4]$
 - B) increasing in the interval $[0, \pi/2]$
 - C) decreasing in the interval $[0, \pi/2]$
 - D) decreasing in the interval $[\pi/4, \pi/2]$
- 12. There are two coins. One has Head marked on both sides. The other is a fair coin. One coin is chosen at random and tossed. What is the probability that Head appears?
 - A) 1

B) 1/2

C) 1/4

- D) 3/4
- 13. If A and B are two events with probabilities p(A) = .7 and p(B) = .8 then which of the following is a consequence?
 - A) $p(A \cup B) \leq \cdot 8$

B) $p(A \cap B) \ge 5$

C) p(A|B) = 1

D) p(B|A) = 1

- 14. $\int_{0}^{\pi} (e^{x} \cos x e^{x} \sin x) dx =$
 - A) 0

B) e^π

C) $1 - e^{\pi}$

D) $-1 - e^{\pi}$

- 15. Let $x_n = \frac{1}{n^2 + 1}$ and $y_n = (-1)^n$. Then which of the following is true about the sequences (x_n) and (y_n) ?
 - A) (x_n) and (y_n) are convergent
- B) $(x_n y_n)$ is convergent
- C) $(x_n + y_n)$ is convergent

- D) $(x_n y_n)$ is convergent
- 16. Let $f_n(x) = x^n \sin(n\pi x)$ and let $f(x) = \lim_{n \to \infty} f_n(x)$ for $x \in [0, 1]$. Then f(1/4) = 1
 - A) 0

- B) 1
- C) 1/2
- D) 1/4
- 17. Let $f(x, y) = \begin{cases} \frac{x^2 + y}{x + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{otherwise} \end{cases}$. Then the directional derivative of f at
 - (0, 0) along (2, 1) is
 - A) 0

B) 1

- C) 1/2
- D) 1/4
- 18. Let [x] denote the greatest integer $\leq x$. Then $\int_{0}^{3} x^{2} d[x] =$
 - A) 0

B) 1

- C) 2
- D) 3
- 19. Let E_1 , E_2 be Lebesgue measurable sets and m be the Lebesgue measure such that $m(E_1) = 1$ and $m(E_2) = 4$. If $E_1 \cap E_2$ is singleton then $m(E_1 \cup E_2) = 1$
 - A) 2

B) 3

C) 4

- D) 5
- 20. Let $f = \chi_E + 2\chi_F + 2\chi_G$ where χ denotes the characteristic function.

If
$$m(E \cap F \cap G) = 1$$
 then $\int_{E \cap F \cap G} f dm =$

A) 3

B) 4

- C) 5
- D) 6

- 21. The imaginary part of $(1 + i\sqrt{3})^6$ is
 - A) 0

- B) 1
- C) 8
- D) 27

- 22. Let e_1 , e_2 be tenth roots of unity. Then $\left| e_1 + e_2 \right|^2 + \left| e_1 e_2 \right|^2 =$
 - A) 2

- D) 8
- 23. Which of the following transformation of the plane is a rotation?
 - A) $T(z) = \frac{z + iz}{\sqrt{2}}$ B) $T(z) = \frac{z + iz}{z + 2}$ C) $T(z) = \frac{z + 2i}{2}$ D) $T(z) = \frac{z + 1}{z 1}$

- 24. The radius of convergence of the series $\sum n^2 z^n$ is
 - A) 1

- B) 2
- C) $\frac{1}{2}$
- D) $\frac{1}{4}$
- 25. Let γ be the circle given by $\gamma(t) = 1 + e^{2\pi i t}$: $0 \le t \le 1$. Then $\int \frac{z \cos \pi z}{z-1} dz = 1$
 - A) 0

B) 1

- C) 2πi
- D) $-2\pi i$

- 26. The residue of $\frac{e^z}{(z-1)^3}$ at z=1 is
 - A) e

- B) e²
- C) $\frac{e}{21}$
- D) $\frac{e}{3!}$
- 27. Let γ be the curve given by $\gamma(t) = \exp(4\pi i t)$: $0 \le t \le 1$. Then $\int \frac{z^2 + 2}{z} dz =$
 - A) 0

- B) 2πi
- C) 4πi
- D) 8πi
- 28. Let S₄ be the symmetric group on 4 symbols. Then the order of the subgroup generated by {(1, 2), (2, 3)} is
 - A) 2

- C) 4
- D) 6

- 29. Which of the following is a cyclic group?
 - A) $\mathbb{Z}_4 \oplus \mathbb{Z}_{10}$

- B) $\mathbb{Z}_5 \oplus \mathbb{Z}_{10}$ C) $\mathbb{Z}_6 \oplus \mathbb{Z}_{10}$ D) $\mathbb{Z}_7 \oplus \mathbb{Z}_{10}$

30. Let $f: \mathbb{Z}_{10} \rightarrow$	\mathbb{Z}_{12} be a nonzero hor	nomorphism of gro	ups. Then f(1) =
Δ\ 1	R) 2	C) 3	D) 6

31. The commutator subgroup of the group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ of quaternion units is

A) Q_8

B) {1}

C) {1, -1}

D) $\{1, -1, i, -i\}$

32. Let G be a group of order 45 and H, K be subgroups of order 9 in G. Then which of the following is true?

A) H = K

B) $|H \cap K| = 1$ C) $|H \cap K| = 3$ D) $|H \cap K| = 5$

33. Let \mathbb{Z}_{10} be the ring of integers mod 10 and $f: \mathbb{Z}_{10} \to \mathbb{Z}_{10}$ be a ring homomorphism. Then which of the following is a possible choice of f(1)?

A) 2

B) 3

C) 4

D) 5

34. Which of the following is not an irreducible polynomial in $\mathbb{Q}[x]$ where \mathbb{Q} is the field of rational numbers?

A) $x^5 + 3x^4 + 6x + 6$

B) $x^5 + 12x^4 - 4x + 6$

C) $x^5 + x^2 - 16x - 4$

D) $x^5 + 12x^2 + 6x + 6$

35. Let $p(x) = x^2 - 5x \in \mathbb{Z}_6[x]$. Then the number of zeros of p(x) is \mathbb{Z}_6 is

A) 2

B) 3

C) 4

D) 6

36. Let $\mathbb{Z}_2(\alpha)$ be an extension of the field \mathbb{Z}_2 where α is a zero of

 $x^3 + x + 1 \in \mathbb{Z}_2[x]$. Then $\alpha^2 + \alpha + 1 =$

A) α^2

B) α^3

C) α^4

D) α^5

37. The order of the automorphism group $\operatorname{Aut}(\mathbb{Q}(\sqrt{2},\sqrt{3}))$ is

A) 1

B) 2

C) 4

D) 6

38. Let α be the real cube root of 2 and ω be a non real cube root of 1. Which of the following is not a splitting field over Q?

A) $\mathbb{Q}(\alpha)$

B) $\mathbb{Q}(\alpha, \omega)$

C) $\mathbb{Q}(\alpha, \omega^2)$

D) $\mathbb{Q}(\alpha^2, \omega)$

A21

39. The minimal polynomial of $1+\sqrt[3]{2}$ over the rationals is

A)
$$x^3 - 6x^2 + 3x - 6$$

B)
$$x^3 - 3x^2 + 3x - 3$$

C)
$$x^3 - 3x^2 + 6x + 3$$

D)
$$x^3 + 6x^2 - 6x + 3$$

40. Let $K = \mathbb{Q}(\sqrt{2}, i)$ and $G = Aut(K/\mathbb{Q})$. Let $H = \{\alpha \in G : \alpha(i) = i\}$. Then which of the following is an element in the fixed field of H?

A)
$$\sqrt{2} + i$$

B)
$$\sqrt{2} - i$$

C)
$$1 + i$$

41. Which of the following is a nilpotent matrix?

A)
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 B) $\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$ C) $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ D) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

B)
$$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

C)
$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

42. Which of the following is a row reduced echelon matrix obtained by transforming

the matrix
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
?

A)
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$B) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$C) \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

D)
$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

43. Which of the following statements is true about the solutions of the system of equations?

$$x + y + z = 1$$

$$2x + y + z = 2$$

$$3x + 2y + 2z = 3$$

- A) has a unique solution
- C) has infinitely many solutions
- B) has exactly two solutions
- D) has no solution

A21

44. The rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 2 & 1 & 0 & 4 \\ 0 & 0 & 3 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 is

A) 1

B) 2

- C) 3
- D) 4
- 45. Which of the following is in the span of $\{(1, 3, 2), (2, 3, 1)\}$ in \mathbb{R}^3 ?
 - A) (1, 2, 3)

B) (2, 3, 4)

C) (3, 2, 5)

- D) (2, 5, 3)
- 46. Which of the following is true about the rows and columns of the matrix

$$\begin{bmatrix} 1 & 0 & 1 & -1 & 1 \\ 2 & 0 & 2 & -2 & 1 \\ 3 & 0 & 3 & -3 & 2 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$
?

- A) rows are independent
- B) columns are independent
- C) any two rows are independent
- D) any two columns are independent
- 47. Let V be the space of all 3×3 matrices over $\mathbb R$ with all diagonal entries zero. Then dimension of V is
 - A) 3

B) 6

C) 8

- D) 9
- 48. Consider the following subsets of \mathbb{R}^2 .

 $W_1 = \{(x, y) : 2x + 3y = 0\}, W_2 = \{(x, y) : x + y = 0\}, W_3 = \{(x, y) : x + y = 1\}.$ Then which of the following is true?

- A) W_1 and W_3 are subspaces of \mathbb{R}^2
- B) W_2 and W_3 are subspaces of \mathbb{R}^2
- C) $W_2 = (1, -1) + W_1$
- D) $W_3 = (1, 0) + W_2$

- 49. Which of the following is a linear transformation from $\mathbb{R}^3 \to \mathbb{R}^2$?
 - A) T(x, y, z) = (x + y, xy)

B) T(x, y, z) = (x + 2y, 3y + z)

C) T(x, y, z) = (xy, yz)

- D) T(x, y, z) = (x + z, xy + z)
- 50. The rank of the linear transformation from \mathbb{R}^4 to \mathbb{R}^4 given by

$$T(x, y, z, w) = (x + y, x + 2y, x + 3y, 0)$$
 is

A) 1

B) 2

C) 3

- D) 4
- 51. Let T(x, y) = (x + y, 2y) be a linear operator on \mathbb{R}^2 . Then which of the following is a matrix of T relative to some basis of \mathbb{R}^2 ?

- B) $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ C) $\begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$ D) $\begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$
- 52. Let V, W be finite dimensional vector spaces and T: $V \rightarrow W$ be an invertible linear transformation. Then which of the following is not necessarily true?
 - A) $\dim V = \dim W$
 - B) range T = W
 - C) For each $\beta \in W$ there is an $\alpha \in V$ such that $T(\alpha) = \beta$
 - D) There exists $\alpha \neq 0$ such that $T(\alpha) = 0$
- 53. The minimal polynomial of the matrix $\begin{vmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{vmatrix}$ is
 - A) (x-1)(x-2)

B) $(x-1)^2 (x-2)$

C) $(x-1)(x-2)^2$

- D) $(x-1)^2 (x-2)^2$
- 54. Which of the following is a non-diagonalizable matrix?
- A) $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix}$ B) $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ C) $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ D) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$

- 55. Let $a = p_1^{a_1} p_2^{a_2} ... p_k^{a_k}$ and $b = p_1^{b_1} p_2^{b_2} ... p_k^{b_k}$ where $p_1, p_2, ..., p_k$ are primes and $a_1 > b_1$ and $a_i \le b_i$ for all $i \ge 2$. Then gcd(a, b) =
 - A) $p_1^{a_1-b_1} p_2^{a_2-b_2} ... p_k^{a_k-b_k}$

B) $p_1^{a_1-b_1} p_2^{b_2-a_2} ... p_k^{b_k-a_k}$

C) $p_1^{b_1} p_2^{a_2} ... p_k^{a_k}$

- D) $p_1^{a_1} p_2^{b_2} ... p_k^{b_k}$
- 56. Let x, y be relatively prime integers. The gcd of 2x + y and 5x + 3y is
 - A) 1

- B) 2
- C) 3
- D) 5
- 57. Let ϕ denote Euler totient function. Then which of the following is not necessarily true?
 - A) $\phi(p) = p 1$ whenever p is a prime
 - B) $\phi(mn) = \phi(n) \phi(n)$ for all positive integers m and n
 - C) $\phi(p^r q^s) = \phi(p^r) \phi(q^s)$ where p, q are primes and p \neq q
 - D) $\phi(n)$ is either 1 or an even number for all n
- 58. Which of the following is not necessarily true about congruences (mod n)?
 - A) if $a \equiv b \pmod{n}$ then $a^2 \equiv b^2 \pmod{n}$ for all a, b
 - B) if $a^2 \equiv b^2 \pmod{n}$ then $a \equiv b \pmod{n}$ for all a, b
 - C) if $a \equiv b \pmod{n}$ then $ac \equiv b \pmod{n}$ for all a, b, c
 - D) if $ac \equiv bc \pmod{n}$ for all $c \neq 0$ then $a \equiv b \pmod{n}$ for all a, b
- 59. Which of the following congruence equations has a solution?
 - A) $2x \equiv 3 \pmod{4}$

B) $3x \equiv 4 \pmod{5}$

C) $4x \equiv 5 \pmod{10}$

- D) $5x \equiv 2 \pmod{10}$
- 60. Which of the following is a multiple of 23?
 - A) $15^{12} 1$
- B) $15^{15} 1$
- C) 15²⁰ 1
- D) $15^{22} 1$
- 61. The general solution of the differential equation x' x' 6x = 0 is
 - A) $C_1e^{3t} + C_2e^{-2t}$

B) $C_1e^{-3t} + C_2e^{2t}$

C) $C_1e^{2t} + C_2e^{-4t}$

D) $C_1e^{4t} + C_2e^{-2t}$

- 62. A particular solution of the differential equation x'' + x = 0 is
 - A) sin t + t cos t

B) sin t + cos t

C) sin t - t cos t

- D) t sin t + cos t
- 63. Which of the following functions satisfies the Laplace equation in two variables?
 - A) $U(x, y) = x^2 y^2$

B) $U(x, y) = x^2 + y^2$

C) $U(x, y) = x^2 + xy$

- D) $U(x, y) = y^2 + xy$
- 64. The differential equation representing the parabolas $y^2 = 4ax$ is
 - A) y'' + y' = 0

B) $yy'' + (y')^2 = 0$

C) yy'' - y' = 0

- D) y'' + yy' = 0
- 65. Which of the following is a metric on \mathbb{R}^2 ? Here $x = (x_1, x_2)$ and $y = (y_1, y_2)$.
 - A) $d(x, y) = |x_1 + y_1| + |x_2 + y_2|$
 - B) $d(x, y) = (x_1 y_1)^2 + (x_2 y_2)^2$
 - C) $d(x, y) = |x_1 y_1| + |x_2 y_2|$
 - D) $d(x, y) = |x_1 y_1| |x_2 y_2|$
- 66. Let X be the metric space of all real valued functions on [0, 1] with metric given by $d(f, g) = max\{|f(x) g(x)| : x \in [0, 1]\}$

Then which of the following (f_n) is a Cauchy sequence in X?

A) $f_n(x) = x^n$

B) $f_n(x) = (-1)^n x^n$

C) $f_n(x) = n + x$

- D) $f_n(x) = nx$
- 67. Let $X = \{1, 2, 3, 4, 5\}$ and $\tau = \{X, \phi, \{1, 2, 3\}, \{2, 3\}\}$ be a topology on X. Then the closure of $\{1, 4\}$ is
 - A) {1, 4}

B) {1, 4, 5}

C) {1, 2, 4}

- D) {1, 3, 4}
- 68. Let τ be a topology on $\mathbb R$ for which $\Sigma = \{(a, \infty) : a > 0\} \cup \{(-\infty, b) : b < 1\}$ is a subbase. Then which of the following is an open set in this space?
 - A) (0, 1)
- B) (1, 2)
- C) (-1, 1)
- D) (-1,0)

69. Let $X = \mathbb{R}$ and Y denote the real line. Let $f: X \to Y$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

and τ be the weak topology on X generated by f. Then which of the following is an open set in X?

A) (0, 1)

B) (-∞, 1)

C) (-∞, 0]

D) $[0, \infty)$

70. Which of the following pairs of sub-spaces of the real line are not homeomorphic?

A) [0, 1] and (0, 1)

B) (0, 1) and (0, 2)

C) (0, 1) and $(-\infty, 0)$

D) (0, 1) and $(0, \infty)$

71. Let X be a normed linear space. Then which of the following is a norm on $X \times X$? Here $(x, y) \in X \times X$

A) f(x, y) = ||x||

B) f(x, y) = ||x|| + ||y||

C) $f(x, y) = ||x||^2 + ||y||$

D) f(x, y) = ||x|| ||y||

72. Let N₁, N₂, N₃ be norms on \mathbb{R}^2 given as follows. N₁(x, y) = |x| + |y|,

 $N_2(x, y) = \sqrt{x^2 + y^2}$ and $N_3(x, y) = max\{|x|, |y|\}$. Let U, V, W denote the unit open balls in \mathbb{R}^2 relative to N_1 , N_2 and N_3 respectively. Then which of the following is true?

A) U⊆V⊆W .

B) U⊆W⊆V

C) V⊆U⊆W : .

D) $V \subseteq W \subseteq U$

73. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by f(x, y) = (x + y, x + y). Then ||f|| =

A) 1

- B) 2 C) $\sqrt{2}$
- D) $\frac{1}{2}$

74. Which of the following is a linear functional of norm 2 on \mathbb{R}^2 with usual norm?

- A) f(x, y) = x + y
- B) $f(x, y) = \sqrt{2}(x + y)$
- C) $f(x, y) = x + \sqrt{2y}$
- D) $f(x, y) = \sqrt{2}x + y$

- 75. Let W = {(x, y, z) : x + y = z} be a sub-space of the Hilbert space \mathbb{R}^3 with usual inner product. Then which of the following is in the orthogonal complement \mathbb{W}^\perp ?
 - A) (1, 0, -1)

B) (1, 1, -1)

C) (0, 1, 1)

- D) (0, 1, -1)
- 76. Let U, W be sub-spaces of a Hilbert space H such that $U \neq W$ and $U^{\perp} = W^{\perp}$. Let P be the orthogonal projection on U, and Q be the orthogonal projection on W and R be a projection on W which is not orthogonal. Then which of the following is not necessarily true? Here composition is defined as (x) PQ = ((x)P) Q.
 - A) PQ = Q

B) QP = P

C) PR = R

- D) QR = Q
- 77. Let f be a bounded linear operator on the Hilbert space \mathbb{C}^2 given by f(x, y) = (x iy, x y). Then the adjoint f^* is given by $f^*(x, y) =$
 - A) (x + y, ix y)

B) (x + iy, x - y)

C) (x - y, x - iy)

- D) (x y, x + iy)
- 78. Let $\{e_1, e_2, e_3, e_4\}$ be an orthonormal set in a Hilbert space. Then which of the following is an orthogonal set?
 - A) $\{e_1 + e_2, e_1 e_2, e_3, e_4\}$
- B) $\{e_1 + e_2, e_2 e_3, e_3 + e_4, e_4\}$
- C) $\{e_1 + e_2, e_1 e_3, e_3, e_4\}$
- D) $\{e_1 + e_2, e_3 e_4, e_3, e_4\}$
- 79. Let $\{e_1, e_2,\}$ be an orthonormal basis of a Hilbert space H and $x \in H$. Then which of the following is not necessarily true?
 - A) $x = \sum \langle x, e_n \rangle e_n$

B) $||x|| = \Sigma |\langle x, e_n \rangle|$

- C) $\Sigma \langle x, e_n \rangle$ is convergent
- D) if $\langle x, e_n \rangle e_n = 0$ for all n then x = 0
- 80. Let \mathbb{R}^3 be the Hilbert space with usual inner product. Let $W = \{(x, y, 0) : x, y \in \mathbb{R}\}$. Then the best approximation to (1, 2, 1) from W is
 - A) (1, 2, 0)

B) (1, 1, 0)

C) (2, 2, 0)

D) (2, 1, 0)