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Mathematical Science

Paper 11
Time Allowed : 75 Minutes] [Maximum Marks : 100
Section 1 1 .
3. Iffiz) =z + 1, then f(2+3i) 15 :
1
1. The function flx) = x + 5 Los x,
1+
xrec Ris: {A) p
{A) non-periodic L
®) ——
(B} periodic with period 2n
{C) periodic with period n 2 —3i
{C)
13
(D) periodic with period 4n
(LY} ]
2, Lim sup of the sequence R dehith
1 o BTT o ( )
@, = — + Bin— is: z+1)dz
" 3 4. f EE— T
14=2 z
(A) 1 + ﬁ
2
(A) —2mi
NG
( -
By 1 5
(B) 2=n
3
o8
(C) 2mu
- 1
RN (D) A4ni

3 [P.T.0.



Let A be n ¥ n real matrix. Then
detiidet A)A) =

(A) det A
(B} (det A}
{(C) (det AY"

(D) (det Ay* * !

31 -l
If A = , then AA

0 1 2
is |
{A) orthogonal
(B} symmetric
(C) skew-symmetric
(I not defined
The following system of equations :
X+ 2y + 28 =56

20+ 2y + 32 =5

dx + 4y + 5z =9
(A} has a unigue solution
(B} has no solution
{(C) has two solutions

{I}} has infinitely many solutions

APR - 30217/11—A

If A is orthogonal matrix, then
(A) det A = 1

{(B) detA =1

{C) detA =0

(D) detA =1

Let X,, X,, ......, X _ be independent
rva with exponential distribution

having mean one. Define :

(A) MGF of Z = []

(B) MGF of W = []

(C) MGF of Z and W are the

same

(D) MGF of Z and W are different




10. Let X, and X, be independent rvs

with U0, 6% i = 1, 2 respectively.

Let Z, = Min(X,, X,) and
0; Z, =X,
Z, =
1; Z, =X

Which of the following statements

is correct 7

0
1
(A) PIZ, =1l = 55 ;if 0, = O
. 262 1 2
61 + 62 ZZ1
(B RZ.) = - :
fiZy =90, "0,
0<Z <6, and 6, < 6,
61 + 62 ZZ1
(C) AZ.) = - :
i) = "g0, "0,

U{EcGIHmiGl}GE

(I} Cannot find the probability

mags function of EE if 0, > 0,

11.

12,

APR - 30217/11—A

If PIA U B) = 0.7 and PiA U BY)

= (1.9, then P(A} is given by :
{A) 0.2
By 0.4
(C) 0.6
(D) 0.8

A sample space consists of [ive
simple evenis E,,E,, E,, E, and E_,
If PIE;) = P(E,;) = 0.15, P(E,) = 0.4
and P(E,) = 2P(E.), then probability

of E, and E, is :
(A) (0.30, 0.20)
(B) (.20, .30)

(C) {0.10, 0.30)

(I (0,20, 0.10)

i

[P.T.0.



13.

14,

If PIDIF) and FP(EIF}) and

PDIF = PEI|F ), then the relation

between P(D) and P(E} is :
{A) P(D) » P(E)
(B) P(D) < P(E)
(C) P(D) = P(E)
(D) Cannot be determined

For a =set of m eguations in n
variables (n > m), a solution obtained
by setting (n — m) variables equal
to zero and solving for remaining
m equations in m variables is

called a/an :

(A} basic solution

(B} feasible solution

{C) basic feasible solution

(D)) optimum solution

15,

16.

APR - 30217/11—A

The set B = {(xl, x2)2x12 +x§ 34}

15 a !

{A) convex set

{B) concave set

{C) unbounded set

(D) concave and convex set

The problem Max Z = 3x, + 2x,

1

subject to :
X +x; <1
2x; + 2x, > 4
Xy % 2 0
has :
{A) No solution
(B} Optimum solution

{C) Feasible solution

(D) Feasible but not optimal

solution




17.

18,

19,

Section 11
If Ax) = xlx|, x € [-1, 1], then :
{A) [ is not continuous

(B} f 18 continuous
differentiable

{C) f 1s differentiable but not
continuously differentiable

(D) fis ' but not c

The Taylor series for cosz around
0 is ;

but not

(A) 1—2—2'+Z—4!— ........
(B) 1+2—2!+Z—4'— ........
(C) 2—3—3'+z_—5!— ........
(D Z+§—3!+5—5' ........

0 3 -l
is !

(A) A — 1) (- 28
(B) (L — 1P (A - 2)
(C) (A= 111(A - 2)
D (- 18

20.

APR - 30217/11—A

If Ais a3 x 3 real matrix such that
A% =0 and A® # 0. Then the Jordan

canonical form of A is :

(A |0 0 1

By o 0 1

) o 1 1

o 0 0

[P.T.0.



21.

22,

Let I be the set of integers. The
points of discontinuity of tanx

are .
(A) nm, n e 1
By 2nm, n e 1

(2n +1)n
2

(C)

el

(D) 712_712'" el

The function fix) = °, x € R is :

{A) Lipschitz but not locally

Lipschitz

{B) Locally Lipschitz but not

Lipschitz

{(C) Neither Lipschitz nor locally

Lipschitz

(D} Lipschitz as well as locally

Lipschitz

23,

24,

APR - 30217/11—A

Consider sequences of functions :

i nx

f”‘_:l.'? = 11 n2g2 lxl <1
X

g (x) = L+ el x|l <1

{A) Sequence f, is uniformly
convergent but sequence £, I8

not uniformly convergent

(B) Sequence f_ is not uniformly

convergent but sequence " 18

uniformly convergent

(C) Neither f nor g converges

uniformly

(D) Both f and g, converge

uniformly

The maximum value of the function

yix)=ax - 1%, 0<x<2is:
Ay O
{B) 4
(C) 2

(D) 4/27




25,

26,

Let f be a real valued function
defined on [a, b]. Which of the
following statements is false ?

{A) If fig continuous on [a, &], then

it is Riemann integrable on

ler, B]
{B) If fis Riemann integrable, then
IFI i= Riemann integrable

{C) If Ifl is Riemann integrable,

then f is Riemann integrable

(I If fis Riemann integrable, then

f* iz Riemann integrable

The radius of convergence for the

geries :

is

{A) O
(B} 1
(C) e

(D} oo

27.

28,

APR - 30217/11—A

The complex function flz) = & + yg +1

has derivative :
{A) everywhere
(B} nowhere

{C) only at z = 0

{I}} only on the points on x-axis
and y-axis,

The function —¢ cosy + 1 :

(A) 15 not harmonie

(B} is harmonic and its harmonic
conjugate is —e*Biny + r,
¢ constant.

(C) iz harmonic and its harmonic
conjugate 15 itself

(I is harmonic and its harmonie
conjugate is —e siny + ¥ + ¢,

¢ eonstant

[P.T.0.



29. The complex numbers z,, z,, 2., z

30,

dF T4

are either collinear or they lie on a

circle if their cross ratio :

=2y Z,—z,
2T T

is !

(A B

(B} i

{C) 2

1+

Let I) be a region (non-empty, open,
connected) in C. An analytic funetion
on D

(A) has continuous derivative on 1D,
but the derivative may not be

analytic on D,

{B) may not have continuous

derivative on D.

{C) has derivatives of all orders

on D,

(D} may have derivative of some
order as a discontinuous

function on D.

APR - 30217/11—A

31. Which of the following is an essential

42,

singularity of :

z-3
f(z):z_l +e/E-29
(A) z =1
B)z=10
{C)z=3
D) z=2

Let D be a non-emply connected
open subset of C and let f: D - C
be an analytic function. Which of the
following statements is not
equivalent to each of the remaining

three statements ?

(A) f=0

{B) f has infinitely many zeros
in D

{(C) There iz a complex number a

in D such that f*ia) = 0 for all

n =

(D) lz e IMfAz)= 0} has a limit point
in D

10



33.

In which of the following groups

every subgroup is a normal

subgroup ?

{A) The group of invertible upper

triangular real 2 x 2 matrices

a b
(e, d = 0
0 d

(B) The permutation group s, {on

a three elements set).

{C) The group of all non-zero

n ® n matrices over real
numbers w.r.t. multiplieation

such that all the entries of the

matrix are equal.

(D) The group of all bijective linear

transformations from R" to R",

APR - 30217/11—A

34, Consider the following three

Eroups
G, = <C’, *> — the multiplicative
group of non-zero complex numbers,

G, = <R, +> — the additive group

of real numbers.

Gy = -:H'.:, *> — the multiplicative

group of positive reals,

Which of the following is frue 7

(A) Gﬂ = Ga
(B) G, = Gy
(C) G, = G,

(D) G, is not cyclic but G, and G,

are cyclic

[P.T.0.



a5, Which of the following is frue ?

(A)

(B}

{C)

()

The ring of polynomials over a

ring is an integral domain.

The ring of » ¥ n — matrices
over a field ie an integral

domain.

If in the ring M (F) of n x n
— matrices over a field F, A is
a matrix such that AB # 0 for
every Bi=0) e M (F), then A is

invertible,

If in the ring of polynomials
over a4 ring R we have a
polynomial fix) such that
floy = 0 for every o € R then

f = 0 polynomial.

a6,

37.

APR - 30217/11—A

The group of automorphisms of the
cyclic group of order 7 is isomorphic

o

{A) (&, +)

(B) (Z., +)

(C) (Z, +)

(D) (Z., +)

Let (¢ be a finite group of order n.

Then G ig isomorphic to :

(A) S,

{B) a quotient group of 5

(C) a subgroup of 5

(D) a normal subgroup of 8

12



38,

Let F be a field with 64 elements.
Then which of the following

statements is frue 7

{A) The multiplicative group of

non-zero elements of F is eyelie,
(B) F is a vector space over Z,,
{C) The characteristic of F is 4

(D} Fis a direct product of two non-

trivial fields,

If & real matrix A has the
characteristic polynomial as (x — oy
{fx — 1) (x — 3) and minimum
polynomial as {x — 2) (x — 1) {x — 3],
then which of the following

statements is mot frue ?
(A Trace A =8
{(B) Det A = 12
{C) A is diagonalizable over R

(D) A is not diagonalizable over R

APR - 30217/11—A

40. If the characteristic polynomial

of matrix A is (x — 1)* (x — 2)°
and the minimum polynomial is

{x — 1 (x — 2), then Lhe Jordan
canonical form of A is ¢

1 0 0 0
0 1 0 0
(A)
0 0 2 1
0 0 0 2
1 1 0 0
0 1 0 0
(B}
0 0 2 1
0 0 0 2
1 0 0 0
0 1 0 0
(C)
0 0 1 0
0 0 0 1
1 1 0 0
0 1 0 0
(D)

13

[P.T.0.



41, Let :

S=lx, x5, x50 € :l:l'.ﬂl.l.'1 +x, +x,=0)
T=x, x,, x50 € R’ lx, 2, + 2= (0
Then which of the following

statements is correct 7

(A} S is a vectorspace of dimension
2 and T 15 a vectorspace of

dimension 2.

(B} 8 is a vectorspace of dimension

2 but T 15 not a vectorspace,

(C) T is a vectorspace of dimension

2 but 5 is not a vectorspace,

(D) Neither S nor T is a vectorspace.

APR - 30217/11—A

42, Let T : RY — R? be defined as :

X
-x+y
Tly|=
2x+y -z
z

Then the matrix representation of

T with respect to standard basis

18 !
-1 2
1 1
(A)
0 -1
-1 1 0
{B)
2 1 -1
2 1 -1
(C)
-1 1 0
2 -1
1 1
(D)
-1 0

14



443,

44,

Let T : B* > R* have characteristic
polynomial (x — 5 (x — 6). If T is

diagonalizable, then :
(A} dim ker (T —

(B) dim ker (T —

T
—
s
]
frs

{C) minimal polynomial of T is

x — 57 (x — 6)

(I} minimal polynomial of T is

(x — 57 (x — 6)

Let v and v be vectors in an
inner produet space such that
e + v|]| = 8, ||# — v|]| = 6 and
lull = 7. Then |jv|| =

(A 51

By 1

(C) 2

D 2

45.

46.

APR - 30217/11—A

The partial differential equation :

b+ 24

xT

+ 41.*.}_", + 2 + Eu_\, =)
{A)} is hyperbolic on R

(B) is parabolic on R*

(C) is elliptic on R®

(D) is
S = lix, v e R*|lx = 0}

hyperbolic on the set

Consider the following statements :

1:1f ¢, ¢, are linearly independent
functions on an interval I, they are
linearly independent on any interval

J contained inside L

I :If ¢,, ¢, are linearly independent
solutions of Liv) = 0 on an interval
1. they are linearly independent on

any interval J contained inside 1.
Then :

{A) Both I and II are true

(B} Both I and II are falze

{(C) Only T is true

(I Only II 15 true

15

[P.T.0.



41,

48,

The solution of the differential

equation :
x x
1 +e dx+ey(1—£de=0
Y

X

&) x+er=c

X

(B) x+ye;=c

X

(C) y+e;=c

X

(D) y+xe;=c

The function flx, ¥} = ;.-2 satisfies a

Lipschitz condition on :

(A ) lx] < oo, Iy < oo}

(B) i vl 1zl <a, Iyl < oo, ia =0}
(C) lix, 93 =T<x<10, ly] <o}

(D e wdl el <er, byl <Bble, >0

APR - 30217/11—A

49, The partial differential equation

a0,

obtained by eliminating arbitrary
constants a and & from :

L

z=a- e ginby
is !
0%z oz
1&} ax—2+$—0
0%z 822_
® 32 %’
0%z 82_0
{C) ay—2+g—
0%z 82_0
(D) ay—2+$—

The complete integral of the partial
differential eguation :

xpg +vgt —1=0
i85
(A) z° = {ax + ¥ + by
(B) (z + B) = dlax + ¥
(C) (z + BF = dilax + )

D) 2% = (ax + ¥ + bx

16



Section 111

51. Let the regression lines of ¥ on X

and X on Y be ¥ = aX + b and
X =Y + o respectively. Consider

the following statements :

(1) The ratio of the variances of X

and Y is c/a.

i2) The correlation coefficient

between X and Y is \[gc.

{3) The walues of X and Y

ch+d ad + b

are  _ = and | — ac
respectively,

Which of the above statements are

correct ?

{A) 1 and 2 only

{B) 1 and 3 only

{(C) 2 and 3 only

(D} All are correct

52,

B

APR - 30217/11—A

IfY=aX +3 and X = 2Y + 6 are
the regression lines of Y on X and
X on Y respectively, then which one

of the following is correct 7
(A 0B <a <1

(B 0 <a <05

Cy D5 <ac<i

D) az=>1

Let X =Xand Y_ = —X, where

X ~ N0, 1). Let Y ~ Ni(0, 1). Then,
which of the following is more

appropriate ?

A X —15 XX+, —L5 Xy

® x —4xy v

© ¥, —15 ¥ X +Y, —L5 Xay

mx, —4 x v, 4 v,

X +Y, —2 X+Y

17

[P.T.0.



54, Let [X,) be a sequence of iid random

65.

variables with E(X,) # 0, and var
{X,) < ==, Then, which of the following

statements is frue 7

(A) %E’l J X, =B (X))

Let X be a non-constant positive
random variable with finite mean,
Then, which of the following is

true 7

{A) E(log X) < log E(X)
(B) [EXN™" > BEX)
(C) log E(X) <= Eilog X)

Dy 1EX) > E(IX])

56,

a7,

APR - 30217/11—A

Let X be a random wvarable with
probability density function f.lx).
Let Y = X then, the probability

density function of Y 1= :

:fX(\/;)+fX(—\/;)J/2. x>0
(V) # A () |2 0

(A)

B

(C)

()] x>0
(D 2fx(\/;)—1. x>0

Let X, and X, be two independent
random variables such that '.'{1 + 1_,
15 a degenerate random variable.

Then :

(A) X, is a degenerate random
variable, but X, is not
(B} X, is a degenerate random

variable, but X, is not

1
(C) Both X, and X, are degenerate
(D) Not possible to conclude

whether X,

and }Ez are

degenerate

18



58. If the r.v. X has Nip, o) then the

2
)ia:

X-u
o

distribution of Z = (
{A}) Normal (0, 1)
{(B) Chi-square with 1 df
(C) Gamma (3/2, 1/2)

(I Half-normal

59, Let X,, X, be distributed as

Poisson (M) then, the distribution of

2X, + X, is :

(A} Poisson (3A)
(B} Poisson (2A)
(C) Poisson (A)

(D} None of the above

APR - 30217/11—A

60. Let X, X, have the following pdf :

M
T as x>0

A =
=)

The distribution 2 = (log 1 + X} +
log (1 + X,) is :

{A) Gamma (2, A}

(B} Gamma (1, 2A)

{C} Gamma (1, A)

() Gamma (2, log A}

) . s - ]"i'.m be 11d rvs
with Bin. p). The distiibution
X = Max Kt. is :

61,

(e d

m

. [n
{A) > []pl‘ln_l -
i=o |

r m — 1
X n
B " X {Jpl q" !
i=0 | g
r m — 1
x—-1 [ n
o m 2 {Jpl qn—l
i=0 i
m — 2
x=-2 | n
oy me .ZO [‘]pl qn—z
i= i

19



62. Suppose X, X, ..., X has the

following pdf ;

fixloy=06x® "L 0<cx<c1,0>0

The distribution of znll —log X,
i=

is |

{A) Same as fix|06)

(B) Gamma (n, 1/0)

{C) Gamma (n, 0)

(D) Gamma (1, 6)

Let X, X,, +ooe.y X be a random
sample from normal distribution

with mean 0 and variance o2, where

6% is known. The confidence

coefficient of the confidence interval
()_(iKG/\/;). where K > 0 is :
(A} an increasing function of K
{B) an increasing function of o
{C) decreasing function of n

(D) constant for all values of K

APR - 30217/11—A

64, Let X, X, ......., X_ be a random

sample from one-parameter
exponential family of a distributions,
which has monotone likelihood ratio
in statistic Tlx). Suppose H, : 0 = 0,
against H, : 6 = 6, (6, > 6,) iz to
be tested. Then MP test based on

Tix) for testing H, against H, is
(A) not UMP

(B} UMP for all 0, > 0,

(C) UMP for all 0, # 6,

(D) UMP for all 6, < 6,

Let X, X, oo » X, be a random
sample from normal distribution

with mean 0 and known variance e,

Then UMVUE of 6% is :

(A) X2

(B} X2 - 1in

(Cy X2 + 1/n
B 2

o x2 -

n




66,

G7.

The random wvariable X has

geometrie  distribution with
parameter ‘p', A random sample of
size n observations contains all
the observations greater than or
equal to an integer 'v'. Then MLE

of p i8 !

{A) rin

(B} greater than r/n

{(C} less than or equal to 14r + 1)
(D) greater than or equal to 14r + 1)

Let X be a r.v. with first kind
beta distribution with parameters
(o, Bi. Then based on a single
observation on X, Most Powerful
test for testing H, : (o, B} = (1, 1)
against H, = (o, B} = (3, 1) has

eritical region of the form

(A Ix tx <cyorx >yl 0y <y
(B) x:x <cl

(C) Ix:x > ¢l

D x:e; < x <y

where ¢, ¢, and ¢, are suitable
constants.

68,

64,

APR - 30217/11—A

Based on a random sample X, X,,,
iy & of size n from double
exponential distribution with
location parameter 0 and scale
parameter 1, sufficient statistic for

0 is :
n
EVRDID ¢
i=1

(B} sample median

(C) Sigiah

k)

the entire sample X, X,,, ...

(D)

n
>
i=1

For testing H,, : 0 = 6, in a normal
population Ni0, o), the eritical
region is oblained as 2 X? <K.
For which alternative hypothesis
does this provide a UMP test ?

{A) o = o,

(B) 0 < o,

iC) o # o,

M o=o0

1

i

21

[Fqu-Dq-



70. Consider a single observation from

the population :

flx: 0) = 0%, 0 < x < oo,

Let X > 1 be the critical region

for testing H, : 6 = 2 against

H, : 0 = 1. What are the values

1

of type 1 and type 2 errors

respectively 7

1
{A) s

(B) 1
e’ 2

e 1
(C) > 0,

1
{D} _27

7l
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In usual notations, if a quantity
olT, 0} exists, whose distribution is
independent of 0, then which of the

following statements are correct ?

{1} oT, 0) iz called a confidence

interval.

{2) olT, 0) iz a pivotal gquantity.

{3) olT, 6) can be used to define
(1 — o) 100% confidence interval

for ©.

Seleet the correct answer using the

choiee given below :

(A} (1) and (2) only

(B} (1) and (3) only

(C) (2) and (3) only

(D) All are correct
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In the pgeneral linear model
Y = XB + ¢, the unbiased estimator
of the variance of the error term
when g¢=vY - XB is

ARy

€€
n—-K

(A)

&
B) —¢

(C)

(D)

If Fy is any continuous distribution
function, and DT is the Kolmogorov-
Smirnov test Statistics, then
V & > 1, the limiting distribution of
V = 4nD?? as n — oo is :

APR - 30217/11—A

74. The first of two samples consists of

7h.

23 pairs and gives a correlation of
0.5 while the second of 28 pairs has

a correlation of 0.8, Which of the

following is true 7
{A) The difference is not significant.

{B) The difference is significant at

1% level.

{C) The difference is significant at

5% level.

(D) The difference is significant at

10% level.

The average number of units in

fl 1 {eo, } '
{A) Chi-square distribution with MM FICERY madal is
2 df equal to
{B) Chi-square distribution with (A) p
n df
(C) Chi-square distribution with B) pAl —p)
{n — 1) df {G}]_p
(D) Chi-square distribution with =)
2n df Dy —
p
23 [P.T.0O.



76, There are 6 jobs each of which must

go through the two machines A and
B in the order of AB. The processing

times (in hrs) are given as :

Jobs Timefor A Time for B

1 4 6
2 8 3
3 3 7
4 i 2
6 7 8
6 5 4

Write down the sequence of jobs that
minimizes the total elapsed time

required to complete the job.
(A) 4—3—2—1—6—5
(B} 3—1—5—6—2—4
(C) 4—2—3—1—6—5

m 1—2—4—3—6—05H

7.

78.
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If the half vearly demand of an item
i3 1600 units, inventory carryving
charges 256% per annum, the unit
cost is Rs. 6.00 and the cost of per
order is Rs. 150, then the economic

order quantity will be :
(A) 400>

(B) 800

(C) 800>

(D) 400

If dual has an unbounded solution,

then primal has :

(A) Unbounded solution
(B) Feasible solution
{C) No feasible solution

(D) Optimal solution
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80. Consider the coin matching game

79. Let there be m-origins, rth origin
invalving two players A and B, Each

possessing a, units of a certain item,
plaver selects either a head (H) or

whereas there are n-destinations
a tail (T). If the coin match, then

with jth destination requiring I}j
player A wins Be. 1 from player B,

units in a transportation problem, otherwise player B wins Re. 1 from

plaver A. Then the optimum

then the number of basic variables

strategies for the playvers and the

are at the most :
value of the game is :

(A) 20m + n)
(A (1, 00,00, 1), V=1
Bym+n-2
(B) (1, 0}, ¢0, 1), V=0
Chm+n L1y f1 1 =
{G} (292)7(272 b v—ﬂ
L1y (rt
M m+n-—-1 (D) 2,2,2,2,1.?:1
25 [PT.0.
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Suppose the variable Y is uniformly
distributed over (5, b + h). The range
15 divided into L strata of equal
sizes, A simple random sample of
size n/L is gelected from each
stratum. If V and ¥V, denote the
variance of estimator (mean) for a
simple random sample of size n
and a stratified random sample

respectively, then ;

{A) ”V] =V
(B) V, = VL?
(C) v] = VL
\4 1
(D) V—L—z

Which of the following would
generally require the largest

sample size 7

{A) Simple random sampling
(B} Stratified random sampling
(C) Cluster sampling

(D) Systematic sampling

&4,

54,
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Lavout of a block design with 5
blocks and 4 treatments A, B, C, D
15 given below

Block 1 A, B,
2 A B,
3 A C,
4
5

O o o

B, C, D
A B C D

Which one of the following
statements is true 7

{A) Everv treatment occurs same
number of times.

{B) Every block containg same
number of plots,

{(C) Every pair of treatment occurs
three times.

(D} Any two blocks contains same
number of treatments common.

The degrees of freedom for the error
sum of squares in a Latin square
design with V rows, V columns and
V treatments with two missing
observation is :

(A) V2 - 3

B (V-1 (V-2 -2
(C) (V- 1) (V-2
D) V-1F—2
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ROUGH WORK

27 [P.T.0.
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ROUGH WORK



