Test Paper : II	Toot Pooklet Carial No. :
Test Subject : MATHEMATICAL SCIENCE	Test Booklet Serial No. :
	OMR Sheet No. :
Test Subject Code : K-2615	Roll No.
	(Figures as per admission card)
Name & Signature of Invigilator/s	
Signature :	
Name :	
Paper :	II MATHEMATICAL SCIENCE
Time: 1 Hour 15 Minutes	Maximum Marks : 100
Number of Pages in this Booklet : 8	Number of Questions in this Booklet : 50
ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಸೂಚನೆಗಳು	Instructions for the Candidates
1. ಈ ಪುಟದ ಮೇಲ್ತುದಿಯಲ್ಲಿ ಒದಗಿಸಿದ ಸ್ಥಳದಲ್ಲಿ ನಿಮ್ಮ ರೋಲ್ ನಂಬರನ್ನು ಬರೆಯಿರಿ.	Write your roll number in the space provided on the top of this page. This page applies of fifty moultiple above transfer was time.
2. ಈ ಪತ್ರಿಕೆಯು ಬಹು ಆಯ್ಕೆ ವಿಧದ ಐವತ್ತು ಪ್ರಶ್ನೆಗಳನ್ನು ಒಳಗೊಂಡಿದೆ.	2. This paper consists of fifty multiple-choice type of questions.3. At the commencement of examination, the question booklet will
3. ಪರೀಕ್ಷೆಯ ಪ್ರಾರಂಭದಲ್ಲಿ, ಪ್ರಶ್ನೆಪ್ರಚಿಕೆಯನ್ನು ನಿಮಗೆ ನೀಡಲಾಗುವುದು. ಮೊದಲ5 ನಿಮಿಷಗಳಲ್ಲಿ	be given to you. In the first 5 minutes, you are requested to
ನೀವು ಪುಸ್ತಿಕೆಯನ್ನು ತೆರೆಯಲು ಮತ್ತು ಕೆಳಗಿನಂತೆ ಕಡ್ಡಾಯವಾಗಿ ಪರೀಕ್ಷಿಸಲು ಕೋರಲಾಗಿದೆ.	open the booklet and compulsorily examine it as below:
(i) ಪ್ರಶ್ನೆ ಪುಸ್ತಿಕೆಗೆ ಪ್ರವೇಶಾವಕಾಶ ಪಡೆಯಲು, ಈ ಹೊದಿಕೆ ಪುಟದ ಅಂಚಿನ ಮೇಲಿರುವ ಪೇಪರ್ ಸೀಲನ್ನು ಹರಿಯಿರಿ. ಸ್ಟಿಕ್ಟರ್ ಸೀಲ್ ಇಲ್ಲದ ಅಥವಾ ತೆರೆದ ಪುಸ್ತಿಕೆಯನ್ನು	(i) To have access to the Question Booklet, tear off the paper
ಪೀಷರ ಸೇರನ್ನು ಹರಯರ. ಸ್ಟಿಕ್ಟರ ಸೀರ ಇಲ್ಲದ ಅಥವಾ ಕರದ ಪುಸ್ತಿಕೆಯನ್ನು ಸ್ತೀಕರಿಸಬೇಡಿ.	seal on the edge of the cover page. Do not accept a
್ವಾರಂಗಾಡು. (ii) ಪುಸ್ತಿಕೆಯಲ್ಲಿನ ಪ್ರಶ್ನೆಗಳ ಸಂಖ್ಯೆ ಮತ್ತು ಪುಟಗಳ ಸಂಖ್ಯೆಯನ್ನು ಮುಖಪುಟದ ಮೇಲೆ	booklet without sticker seal or open booklet. (ii) Tally the number of pages and number of questions
ಮದ್ರಿಸಿದ ಮಾಹಿತಿಯೊಂದಿಗೆ ತಾಳೆ ನೋಡಿರಿ. ಪುಟಗಳು/ಪ್ರಶ್ನೆಗಳು ಕಾಣೆಯಾದ,	in the booklet with the information printed on the
ಅಥವಾ ದ್ರಿಪ್ರತಿ ಅಥವಾ ಅನುಕ್ರಮವಾಗಿಲ್ಲದ ಅಥವಾ ಇತರ ಯಾವುದೇ ವ್ಯತ್ಯಾಸದ	cover page. Faulty booklets due to pages/questions
ದೋಷಪೂರಿತ ಪುಸ್ತಿಕೆಯನ್ನು ಕೂಡಲೆ5 ನಿಮಿಷದ ಅವಧಿ ಒಳಗೆ, ಸಂವೀಕ್ಷಕರಿಂದ ಸರಿ	missing or duplicate or not in serial order or any
ಇರುವ ಪುಸ್ತಿಕೆಗೆ ಬದಲಾಯಿಸಿಕೊಳ್ಳಬೇಕು. ಆ ಬಳಿಕ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯನ್ನು	other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the
ಬದಲಾಯಿಸಲಾಗುವುದಿಲ್ಲ, ಯಾವುದೇ ಹೆಚ್ಚು ಸಮಯವನ್ನೂ ಕೊಡಲಾಗುವುದಿಲ್ಲ.	period of 5 minutes. Afterwards, neither the Question
4. ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಗೂ(A), (B), (C) ಮತ್ತು(D) ಎಂದು ಗುರುತಿಸಿದ ನಾಲ್ಕು ಪರ್ಯಾಯ	Booklet will be replaced nor any extra time will be given.
ಉತ್ತರಗಳಿವೆ. ನೀವು ಪ್ರಶ್ನೆಯ ಎದುರು ಸರಿಯಾದ ಉತ್ತರದ ಮೇಲೆ, ಕೆಳಗೆ ಕಾಣಿಸಿದಂತೆ	4. Each item has four alternative responses marked (A), (B), (C)
ಅಂಡಾಕೃತಿಯನ್ನು ಕಪ್ಪಾಗಿಸಬೇಕು.	and (D). You have to darken the oval as indicated below on the
ಉದಾಹರಣೆ: (A) (B) (D)	correct response against each item.
(C) ಸರಿಯಾದ ಉತ್ತರವಾಗಿದ್ದಾಗ.	Example: (A) (B) (D) where (C) is the correct response.
5. ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆ I ರಲ್ಲಿ ಕೊಟ್ಟಿರುವ OMR ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ, ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆ I ಮತ್ತು	•
ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆ II ರಲ್ಲಿ ಇರುವ ಪ್ರಶ್ನೆಗಳಿಗೆ ನಿಮ್ಮ ಉತ್ತರಗಳನ್ನು ಸೂಚಿಸತಕ್ಕದ್ದು. OMR ಉತ್ತರ	 Your responses to the questions are to be indicated in the OMR Sheet kept inside the Paper I Booklet only. If you mark at any
ಹಾಳೆಯಲ್ಲಿ ಅಂಡಾಕೃತಿಯಲ್ಲದೆ ಬೇರೆ ಯಾವುದೇ ಸ್ಥಳದಲ್ಲಿ ಉತ್ತರವನ್ನು ಗುರುತಿಸಿದರೆ,	place other than in the ovals in the Answer Sheet, it will not be
ಅದರ ಮೌಲ್ಯಮಾಪನ ಮಾಡಲಾಗುವುದಿಲ್ಲ.	evaluated.
6. OMR ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಕೊಟ್ಟ ಸೂಚನೆಗಳನ್ನು ಜಾಗರೂಕತೆಯಿಂದ ಓದಿರಿ.	6. Read the instructions given in OMR carefully.
7. ಎಲ್ಲಾ ಕರಡು ಕೆಲಸವನ್ನು ಪುಸ್ತಿಕೆಯ ಕೊನೆಯಲ್ಲಿ ಮಾಡತಕ್ಕದ್ದು . 8. ನಿಮ್ಮ ಗುರುತನ್ನು ಬಹಿರಂಗಪಡಿಸಬಹುದಾದ ನಿಮ್ಮ ಹೆಸರು ಅಥವಾ ಯಾವುದೇ	7. Rough Work is to be done in the end of this booklet.8. If you write your name or put any mark on any part of the OMR
ಚಿಪ್ಪೆಯನ್ನು ಸಂಗತವಾದ ಸ್ಥಳ ಹೊರತು ಪಡಿಸಿ, OMR ಉತ್ತರ ಹಾಳೆಯ ಯಾವುದೇ	Answer Sheet, except for the space allotted for the relevant
ಭಾಗದಲ್ಲಿ ಬರೆದರೆ, ನೀವು ಅನರ್ಹತೆಗೆ ಬಾಧ್ಯರಾಗಿರುತ್ತೀರಿ.	entries, which may disclose your identity, you will render yourself
9. ಪರೀಕ್ಷೆಯು ಮುಗಿದನಂತರ, ಕಡ್ಡಾಯವಾಗಿ OMR ಉತ್ತರ ಹಾಳೆಯನ್ನು ಸಂವೀಕ್ಷಕರಿಗೆ	liable to disqualification.
ನೀವು ಹಿಂತಿರುಗಿಸಬೇಕು ಮತ್ತು ಪರೀಕ್ಷಾ ಕೊಠಡಿಯ ಹೊರಗೆ OMR ನ್ನು ನಿಮ್ಮೆಂದಿಗೆ	You have to return the test OMR Answer Sheet to the invigilators at the end of the examination compulsorily and must NOT
ಕೊಂಡೊಯ್ಯಕೂಡದು.	carry it with you outside the Examination Hall.
10. ಪರೀಕ್ಷೆಯ ನಂತರ, ಪರೀಕ್ಷಾ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯನ್ನು ಮತ್ತು ನಕಲು OMR ಉತ್ತರ ಹಾಳೆಯನ್ನು	10. You can take away question booklet and carbon copy of OMR
ನಿಮ್ಮೆಂದಿಗೆ ತೆಗೆದುಕೊಂಡು ಹೋಗಬಹುದು.	Answer Sheet soon after the examination.

K-2615 ಪು.ತಿ.ನೋ./P.T.O.

11. ನೀಲಿ/ಕಪ್ಪುಬಾಲ್ಪಾಯಿಂಟ್ ಪೆನ್ ಮಾತ್ರವೇ ಉಪಯೋಗಿಸಿರಿ.

13. ಸರಿ ಅಲ್ಲದ ಉತ್ತರಗಳಿಗೆ ಋಣ ಅಂಕ ಇರುವುದಿಲ್ಲ .

12. ಕ್ಯಾಲ್ಕುಲೇಟರ್ ಅಥವಾ ಲಾಗ್ ಟೇಬಲ್ ಇತ್ಯಾದಿಯ ಉಪಯೋಗವನ್ನು ನಿಷೇಧಿಸಲಾಗಿದೆ.

14. ಕನ್ನಡ ಮತ್ತು ಇಂಗ್ಲೀಷ್ ಆವೃತ್ತಿಗಳ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಗಳಲ್ಲಿ ಯಾವುದೇ ರೀತಿಯ ವೃತ್ಯಾಸಗಳು ಕಂಡುಬಂದಲ್ಲಿ, ಇಂಗ್ಲೀಷ್ ಆವೃತ್ತಿಗಳಲ್ಲಿರುವುದೇ ಅಂತಿಮವೆಂದು ಪರಿಗಣಿಸಬೇಕು.

11. Use only Blue/Black Ball point pen.

12. Use of any calculator or log table etc., is prohibited.

 In case of any discrepancy found in the Kannada translation of a question booklet the question in English version shall be taken as final.

13. There is no negative marks for incorrect answers.

MATHEMATICAL SCIENCE Paper – II

Note: This paper contains fifty (50) objective type questions, each question carries two (2) marks. Attempt all the questions.

- 1. If $f(x) = x \log (1 + x^{-1})$, $0 < x < \infty$, then $\lim_{x \to 0} f(x)$ and $\lim_{x \to \infty} f(x)$ are respectively equal to
 - (A) $0, +\infty$
- (B) $+\infty$, 1
- (C) 0, 1
- (D) 1, 1
- 2. The sum of the series

$$\sum_{n=0}^{\infty} arctan \left(\frac{1}{n^2 + n + 1} \right) is$$

- (A) $\frac{\pi}{2}$
- (B) $\frac{\pi}{4}$
- (C) 1
- (D) (
- **3.** Let $x_1 \ge x_2 \ge \ldots \ge x_k \ge 0$. Then

$$\lim_{n\to\infty} \left(x_1^n + x_2^n + \ldots + x_k^n \right)^{1/n} \text{ is equal to}$$

- (A) 0
- (B) x
- (C) k
- (D) \propto
- 4. If $u = \frac{yz}{x}$, $v = \frac{xz}{y}$, $w = \frac{xy}{z}$, then the

Jacobian
$$J\left(\frac{u,v,w}{x,y,z}\right)$$
 is equal to

- (A) 0
- (B) 6
- (C) 2
- (D) 4
- 5. The number of different committees of 5 members that can be formed from a set of 8 members is
 - (A) 28
- (B) 56
- (C) 8
- (D) 70

- **6.** If 'a' and 'b' are two distinct integers, then there is always an integer x such that
 - (A) x a and x b are divisible by 7
 - (B) x − a and x − b are divisible by 7 and 49
 - (C) x a and x b are divisible by 7 and 7^3
 - (D) x − a is divisible by 7 and x − b is divisible by 5
- 7. Let G be a finite non-trivial cyclic group. Then the number of normal subgroups of G is
 - (A) Always equal to the order of the group
 - (B) 2, if the order of the group is prime
 - (C) Always 2
 - (D) Always 1
- **8.** The number of 5-sylow subgroups of the symmetric group S_5 on 5 symbols is
 - (A) 6
- (B) 1
- (C) 25
- (D) 11
- 9. Let G be a group of order 27. Then
 - (A) G always has a quotient group of order 9
 - (B) G is always abelian
 - (C) G is always cyclic
 - (D) G always has an element of order 9

10. The Cauchy product of the series

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1}}{n} \text{ with itself is}$$

- (A) $\sum_{n=1}^{\infty} \frac{1}{n^2}$
 - (B) Divergent
- (C) Convergent (D) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
- 11. Which one of the following statements is false?
 - (A) R in the discrete topology is connected
 - (B) A path connected space is connected
 - (C) The subspace Q of R is not connected
 - (D) Every convex subset of R is connected
- **12.** Which one of the following is a metric on R?
 - (A) $d(x, y) = |x^2 y^2|$
 - (B) d(x, y) = |x 2y|
 - (C) $d(x, y) = \frac{|x y|}{1 + |x y|}$
 - (D) $d(x, y) = (x y)^2$
- **13.** If A is a subset of a topological space X,

Int A \cup BdA \cup Int (X – A) is equal to

- (A) A
- (B) \overline{A}
- (C)
- (D) X
- **14.** Let $\{x_n\}$ be an arbitrary sequence of real numbers such that given $\varepsilon > 0$ there exists an $N \in \mathbb{N}$ with the property that $|x_n - x_{n+1}| < \varepsilon$ for all $n \ge N$. Then the sequence {x_n}
 - (A) Is Cauchy
 - (B) Diverges
 - (C) Has no limit
 - (D) May or may not converge

- **15.** A basis for the orthogonal complement of the linear span of {(1, 2, 0), (2, 3, 0)} in \mathbb{R}^3 as a vector space over \mathbb{R} is
 - (A) {(0, 1, 0), (0, 0, 1)}
 - (B) {(0, 0, 1)}
 - (C) {(1, 0, 0)}
 - (D) $\{(3, 5, 0)\}$
- **16.** Consider the xy-plane \mathbb{R}^2 as a vector space over R. Which of the following is not a linear transformation?
 - (A) Rotation by 90°, clockwise, about the origin
 - (B) Reflection about the x-axis
 - (C) Reflection about the y-axis
 - (D) Reflection about the line y = 1
- 17. Let V be a vector space over the field C of complex numbers. Which one of the following statements is true?
 - (A) $\dim_{\mathbb{R}} V$ may be infinite even if $\dim_{\mathbb{C}} V$
 - (B) $\dim_{\mathbb{R}} V = \dim_{\mathbb{C}} V$
 - (C) dim V is infinite
 - (D) dim_V=dim_V
- **18.** Rank of the linear transformation given

by the matrix
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 12 \end{pmatrix}$$
 is

- (A) 3 over the field \mathbb{F}_{3} with three elements
- (B) 2 over the field of real numbers
- (C) 2 over the field \mathbb{F}_2 with two elements
- (D) 3 over the field of rational numbers
- **19.** If T is a singular linear transformation of a vector space V over real numbers, then
 - (A) T has no real eigen-values
 - (B) T has no non-zero eigen-vectors
 - (C) T has atleast one non-zero eigen-vector
 - (D) T has atleast one non-zero eigen-value

20. If $X_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$, then for n > 1,

(A)
$$n^2(n+1)^{1/n} < n+x_n$$

(B)
$$n(n+1)^{\frac{1}{n}} < n + x_n$$

(C)
$$n(n+1)^{\frac{1}{n}} < x_n$$

(D)
$$n(n+1)^{\frac{1}{n}} > n+x_n$$

21. Let $f(z) = z^3 - 1$ and let I denote the integral $I = \int_C \frac{f(z)}{z - 1} dz$

Where C is the circle with centre (1, 0) and radius 2, clockwise oriented. Then the value of I is

- (A) 2πi
- (B) $-2\pi i$
- (C) 0
- (D) 1

22. Consider the power series

$$P(z) = 1 + z + z^2 + \dots$$

and

$$Q(z) = 1 + 2z + 3z^2 + \dots$$

and let r, s denote their radii of convergence respectively. Then

- (A) $0 < r < s \le 1$
- (B) $0 < s < r \le 1$
- (C) $0 < r < s < +\infty$
- (D) r = s = 1

23. Given that

f(z) = u(x, y) + iv(x, y) is analytic in \mathbb{C} . If $u(x, y) = e^x \cos y$ then v(x, y) must be

- (A) e^x siny
- (B) $e^y \cos x$
- (C) e^x cosx
- (D) e^y sinx

24. Let $f(z) = \frac{1+z}{1-z}$. Then f maps the unit disc D = $\{z \mid |z| < 1\}$

- (A) Onto the right half-plane
- (B) Onto the left half-plane
- (C) Onto the upper half-plane
- (D) Onto the lower half-plane

25. Let K(x, y) be a given real function defined for $0 \le x \le 1$, $0 \le y \le 1$, f(x) a given real function defined for $0 \le x \le 1$ and λ an arbitrary complex number. Then the general linear Fredholm integral equation of the second kind for a function $\phi(x)$ is an equation of the type,

(A)
$$\lambda \int_0^1 K(x, y) \phi(y) dy = f(x)$$
 $(0 \le x \le 1)$

(B)
$$\lambda \int_{0}^{1} K(x, y) \phi(x) dy = f(x)$$
 $(0 \le x \le 1)$

(C)
$$\phi(x) - \lambda \int_{0}^{1} K(x, y) \phi(y) dy = f(x)$$

 $(0 \le x \le 1)^{0}$

(D)
$$f(x) - \lambda \int_{0}^{1} K(x,y) \phi(y) dy = \phi(x) (0 \le x \le 1)$$

26. The order of convergence and asymptotic error constant in bisection method are respectively

- (A) 1, 1
- (B) $1, \frac{1}{2}$
- (C) 2, 1
- (D) 2, $\frac{1}{2}$

(4)

Total Number of Pages: 8

- **27.** Consider a partial differential equation $au_{xx} + 2bu_{xy} + cu_{yy} + du_x + eu_y + fu = g...(1)$ where a, b, c, d, e, f, g are of class $c^2(\Omega)$, $\Omega \subseteq \mathbb{R}^2$ is a domain and $(a, b, c) \neq (0, 0, 0)$ in Ω . Let $\Delta(x,y) = (b(x,y))^2 a(x,y) c(x,y)$. Then the equation (1) at a point $p(x,y) \in \Omega$.
 - (A) is parabolic if $\Delta(x, y) > 0$
 - (B) is hyperbolic if $\Delta(x, y) < 0$
 - (C) is elliptic if $\Delta(x, y) \neq 0$
 - (D) is hyperbolic if $\Delta(x, y) > 0$
- **28.** Let M(x, y) and N(x, y) be homogeneous functions of the same degree n such that $M(x, y)dx + N(x, y) dy = 0 \dots (1)$ Then the solution of (1) is of the form
 - (A) $F\begin{pmatrix} y \\ x \end{pmatrix} + \ln|x| = c$, where c is any arbitrary constant
 - (B) $F\left(\frac{x^2}{y^2}\right) + \ln|x| = c$, where c is any arbitrary constant
 - (C) $F\left(\frac{x}{y}\right) + 2 \ln|x| = c$, where c is any arbitrary constant
 - (D) $F\begin{pmatrix} y \\ x \end{pmatrix} + y \ln|x| = c$, where c is any arbitrary constant
- **29.** If the function $y = \phi(x)$ at x = 1 is defined implicitly by the equation $e^{-x\cos y} + \sin y = e$.

Then $\left(\frac{dy}{dx}\right)_{x=1}$ is equal to

- (A) $-e^{-1}$
- (B) e
- (C) e^{-1}
- (D) e

30. Let E be a non compact bounded subset of \mathbb{R} , x_0 be a limit point of E, $x_0 \notin E$ and $g: E \to \mathbb{R}$ be defined by

$$g(x) = \frac{1}{1 + (x - x_0)^2}.$$

Then which one of the following statements is false?

- (A) g is continuous on E
- (B) g is bounded on E
- (C) g attains its maximum on E
- (D) If $x_0 < x < y$, then g(x) > g(y)
- For a negatively skewed distribution, the correct relation between mean, median and mode is
 - (A) mean = median = mode
 - (B) median < mean < mode
 - (C) mean < median < mode
 - (D) mode < mean < median
- **32.** If A₁ and A₂ are two independent events then which of the following is not true?
 - (A) $P(A_1 \cap A_2) = P(A_1).P(A_2)$
 - (B) $P(A_1 \cup A_2) = P(A_1) + P(A_2)$
 - (C) $P(A_1^C \cap A_2^C) = P(A_1^C) \cdot P(A_2^C)$
 - (D) $P(A_1 \cap A_2^C) = P(A_1) \cdot P(A_2^C)$
- **33.** Let $\{X_n\}$ be a sequence of independent random variables with $P[X_n = n^2] =$

$$P[X_n = -n^2] = \frac{1}{2}, n = 1, 2, ...$$
 Then

- (A) $\{X_n\}$ obeys weak law of large numbers
- (B) $\{X_n\}$ obeys strong law of large numbers
- (C) {X_n} obeys central limit theorem
- (D) $\{X_n\}$ does not obey any of the limit theorems

- 34. A Markov chain is irreducible if
 - (A) All states communicate with each other
 - (B) All states are absorbing
 - (C) Its transition probability matrix is non-singular
 - (D) Its states do not communicate with each other
- **35.** Which one of the following statements is not true for a Brownian motion process?
 - (A) It is a process with independent increments
 - (B) Its increments are normally distributed
 - (C) It is a Markov process
 - (D) It is strictly stationary
- **36.** If X is a continuous random variable with distribution function F(.) then F(X) follows a
 - (A) Uniform distribution
 - (B) Pareto distribution
 - (C) Beta distribution
 - (D) Triangular distribution
- **37.** If X and Y are independent unit mean exponential random variables then which one of the following statements is true?
 - (A) Max (X, Y) follows exponential distribution
 - (B) Min (X, Y) follows exponential distribution
 - (C) X_{V} follows exponential distribution
 - (D) $\frac{X}{X+Y}$ follows exponential distribution

- **38.** If the variance of a binomial distribution is 5 its mean could be
 - (A) 5
 - (B) 8
 - (C) 3
 - (D) 1
- **39.** Which one of the following distributions does not possess, the monotone likelihood ratio property?
 - (A) Normal
 - (B) Exponential
 - (C) Gamma
 - (D) Cauchy
- **40.** Let X_1, X_2, \ldots, X_n be a random sample from the normal distribution with mean 0 and variance σ^2 . Then the UMP test for testing $H_0: \sigma = 1$ versus $H_1: \sigma \neq 1$.
 - (A) is to reject H_0 if $\sum_{i=1}^n X_i^2 > C_2$
 - (B) is to reject H_0 if $\sum_{i=1}^n X_i^2 < C_1$
 - (C) is to reject \boldsymbol{H}_0 if $\boldsymbol{C}_1 < \sum_{i=1}^n \boldsymbol{X}_i^2 < \boldsymbol{C}_2$
 - (D) does not exist
- **41.** With references to a Gauss-Markov model, which one of the following is not true given that:

$$H: \alpha_1 - \alpha_2 = 0$$
$$\alpha_1 + \alpha_2 - 2\alpha_3 = 0$$

- (A) H is not a linear hypothesis
- (B) H is a linear hypothesis
- (C) H is equivalent to H*: $\alpha_1 = \alpha_2 = \alpha_3$
- (D) H is a testable hypothesis

Total Number of Pages: 8

- **42.** If $a'\beta$ is an estimable function from a full rank linear model $y = X\beta + \epsilon$ then the variance of $a'\beta$ is
 - (A) $a'a\sigma^2$
 - (B) $a'(X'X)a\sigma^2$
 - (C) $a'X(X'X)^{-1}X'a\sigma^2$
 - (D) $a'(X'X)^{-1}a\sigma^2$
- 43. If X follows a trivariate normal distribution with mean vector μ and dispersion matrix Σ then for a q \times 3 matrix A, then AX follows a
 - (A) q-variate normal with mean A μ and dispersion matrix Σ
 - (B) q-variate normal with mean A μ and dispersion matrix A Σ A'
 - (C) q-variate normal with mean A μ and dispersion matrix $\, \text{A}' \, \Sigma \, \text{A} \,$
 - (D) 3-variate normal with mean $\,A\,\mu\,$ and dispersion matrix $\,A\,\Sigma\,\,A'$
- **44.** If the random vector (X_1, X_2, X_3) has the

covariance matrix
$$\Sigma = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
,

then the first principal component is

(A)
$$Y_1 = -0.040 X_1 + 0.999 X_2$$

(B)
$$Y_1 = 0.924 X_1 + 0.383 X_2$$

(C)
$$Y_1 = 0.383 X_1 - 0.924 X_2$$

(D)
$$Y_{1} = X_{1}$$

- **45.** In a cluster sampling, the size of cluster decreases if
 - (A) total budget of survey decreases
 - (B) the cost of enumerating a unit decreases
 - (C) average cost of travel between clusters decreases
 - (D) average travel cost between clusters increases
- 46. Which one of the following need not be true for a BIBD with parameters v, b, r, k, λ?
 - (A) vr = bk
 - (B) $b \ge v$
 - (C) $\lambda(v-1) = r(k-1)$
 - (D) b = v
- 47. A block design has 4 blocks, 5 treatments. What is the maximum rank of the design matrix of such a design?
 - (A) 8
- (B) 9
- (C) 7
- (D) 4
- 48. In type 1 censoring
 - (A) the study period is random
 - (B) the study period is fixed
 - (C) number of failed units is fixed
 - (D) number of censored units is fixed
- 49. Simplex method is employed to solve a
 - (A) quadratic programming problem
 - (B) dynamic programming problem
 - (C) linear programming problem
 - (D) stochastic programming problem
- **50.** In a queuing process with mean arrival rate λ , if L and W denote the expected number of units and expected waiting time in the system at the steady state, then Little's formula is
 - (A) $L = \lambda W$
- (B) $W = L\lambda$
- (C) $L = \lambda^2 W$
- (D) $W = \lambda^2 L$

ಚಿತ್ತು ಬರಹಕ್ಕಾಗಿ ಸ್ಥಳ Space for Rough Work